【数B】数列: 等差×等比型の数列和! ∑[k=1からn]k・2^kの和を求めよ。 - 質問解決D.B.(データベース)

【数B】数列: 等差×等比型の数列和! ∑[k=1からn]k・2^kの和を求めよ。

問題文全文(内容文):
$\displaystyle \sum_{k\to1}^k・2^k$の和を求めよ.
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\displaystyle \sum_{k\to1}^k・2^k$の和を求めよ.
投稿日:2020.09.24

<関連動画>

難問!奇問!正しいのは1つだけ!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
正しいものを1つ選べ
(1)4の倍数かつ6の倍数の数は24の倍数
(2)0.14はπの小数部分
(3)$\sqrt{2n}$が整数となる最小の整数nは2
(4)$230-220 \div 2=5$
この動画を見る 

いい問題

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
n自然数
$\sqrt{n}$に最も近い整数を$a_n$とする
(例)$a_3=2$,$a_{10}=3$
$\displaystyle\sum_{n=1}^{2023}\frac{1}{a_n}$を求めよ
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(3)〜漸化式で与えられた数列の項の値

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(3)$a$を実数とする。
数列$\left\{a_n\right\}$が次の条件を満たしている。
$(\textrm{i})a_1=a$
$(\textrm{ii})a_{n+1}=a_n^2-2a_n-3(n=1,2,3,\ldots)$
このとき、すべての正の整数$n$に対して、$a_n \leqq 10$となるような
$a$の最小値は$\boxed{\ \ ウ\ \ }$である。

2022早稲田大学商学部過去問
この動画を見る 

ガウス記号・漸化式・合同式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[(7+\sqrt{41}^{2021}]$を$2^{2021}$で割った余りを求めよ.
この動画を見る 

兵庫医科大 3項間漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#兵庫医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$ $a_{2}=4$
$a_{n+2}=4a_{n+1}-3a_{n}-2$
一般項を求めよ

出典:2002年兵庫医科大学 過去問
この動画を見る 
PAGE TOP