【数Ⅱ】式と証明:実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。 - 質問解決D.B.(データベース)

【数Ⅱ】式と証明:実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。

問題文全文(内容文):
実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。
チャプター:

0:00 オープニング
0:24 原則
0:45 わざと原則でやってみる
2:42 右辺も変形
4:00 時短!裏ワザ!!!

単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #クリアー数学#クリアー数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。
投稿日:2020.12.14

<関連動画>

【次数が高くても焦るな】対称式 入試問題【2017年昭和大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a+b=1,a^2+b^2=3$のとき、$a^7+b^7$の値を求めよ。

2017昭和大過去問
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察4(受験編)

アイキャッチ画像
単元: #中1数学#方程式#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}\ n$個の変数の相加・相乗平均の関係を証明せよ。
つまり、$n$個の正の数$\ a_1,a_2,\cdots,a_n$に対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

17京都府教員採用試験(数学:共通4番 組合せ)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
4⃣ $n \geqq 2 $,$1 \leqq r \leqq n-1 $
(1)${}_nC_r= {}_{n-1}C_{r-1}+{}_{n-1}C_r$
(2)$\displaystyle \sum_{k=r}^n {}_kC_r={}_{n+1}C_{r+1}$
この動画を見る 

福田の数学〜早稲田大学2022年社会科学部第3問〜整式の割り算の余りの問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
整式$P(x)$を$x-1$で割ると1余り、$(x+1)^2$で割ると$3x+2$余る。
このとき、次の問いに答えよ。
(1)$P(x)$を$x+1$で割った時の余りを求めよ。
(2)$P(x)$を$(x-1)(x+1)$で割った時の余りを求めよ。
(3)$P(x)$を$(x-1)(x+1)^2$で割った時の余りを求めよ。

2022早稲田大学社会科学部過去問
この動画を見る 

【数学Ⅱ】相加平均・相乗平均がクリアに理解できる動画

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$a \gt 0$のとき、$a+ \frac{1}{a} \geqq 2$を証明せよ。
また、等号が成立する場合を調べよ。
-----------------
$a>0,b>0$のとき、次の不等式を示せ。
また、等号成立条件を調べよ
$(a+ \frac{1}{b})(b+ \frac{16}{a})\geqq 25$
この動画を見る 
PAGE TOP