【数Ⅱ】式と証明:実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。 - 質問解決D.B.(データベース)

【数Ⅱ】式と証明:実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。

問題文全文(内容文):
実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。
チャプター:

0:00 オープニング
0:24 原則
0:45 わざと原則でやってみる
2:42 右辺も変形
4:00 時短!裏ワザ!!!

単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #クリアー数学#クリアー数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
実数x,y,zがx+y+z=0を満たすとき(x+y)(y+z)(z+x)=-xyzが成り立つことを証明せよ。
投稿日:2020.12.14

<関連動画>

福田の数学〜東京慈恵会医科大学2023年医学部第3問〜無理数である証明

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ Oを原点とする座標平面において、第1象限に属する点P($\sqrt 2r$, $\sqrt 3s$)(r,sは有理数)をとるとき、線分OPの長さは無理数となることを示せ。

2023東京慈恵会医科大学医学部過去問
この動画を見る 

【数学Ⅱ】相加平均・相乗平均がクリアに理解できる動画

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
$a \gt 0$のとき、$a+ \frac{1}{a} \geqq 2$を証明せよ。
また、等号が成立する場合を調べよ。
-----------------
$a>0,b>0$のとき、次の不等式を示せ。
また、等号成立条件を調べよ
$(a+ \frac{1}{b})(b+ \frac{16}{a})\geqq 25$
この動画を見る 

13京都府教員採用試験(数学:2番 積分・不等式の証明)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$
(1)$a\gt 1,\displaystyle \int_{1}^{a} \dfrac{1}{x^2+2x}\ dx$

(2)$n$を自然数とする.
$\dfrac{n(3n+5)}{(n+1)(n+2)}\gt 2\log\dfrac{3(n+1)}{n+3}$
を示せ.
この動画を見る 

【数Ⅱ】【式と証明】不等式の証明7 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
a>0,b>0,c>0のとき、(a+b)(b+c)(c+a)≧8abc が成り立つことを証明せよ。また、等号が成り立つのはどのようなときか。
この動画を見る 

九州大 数式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x+y}{2}=\displaystyle \frac{y+z}{3}=\displaystyle \frac{z+x}{7}$
すべての実数$x,y,z$でつねに$x^2+y^2+z^2+a(x+y+z) \gt -1$となるような$a$の範囲は?

出典:1962年九州大学 過去問
この動画を見る 
PAGE TOP