群馬大(医)漸化式 - 質問解決D.B.(データベース)

群馬大(医)漸化式

問題文全文(内容文):
$a_1=15$であり,$n$を自然数とする.
$a_n-2a_{n-1}+4^n-1$

(1)$a_n$を$n$の式で表せ.
(2)$\displaystyle \sum_{n=1}^{\infty}\dfrac{2^n}{a_n}$

1992群馬大(医)過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=15$であり,$n$を自然数とする.
$a_n-2a_{n-1}+4^n-1$

(1)$a_n$を$n$の式で表せ.
(2)$\displaystyle \sum_{n=1}^{\infty}\dfrac{2^n}{a_n}$

1992群馬大(医)過去問
投稿日:2020.07.06

<関連動画>

東京医科大 見掛け倒しな問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#東京医科大学#東京医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1008$の正の約数$n$個を大きい順に並べた数列を
$a_1,a_2・・・・・・,a_n$とし、$S(x)$を$S(x)=\displaystyle \sum_{k=1}^n a_k^x $とする。
①$S(0)$ ②$S(1)$ ③$S(-1)$ ④$\dfrac{S(2)}{S(1)}$
この動画を見る 

早稲田(理)超簡単 場合の数・漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1,2,3$を$n$個並べて$n$桁の数を作る。
1が奇数個使われている数を$a_{n}$個
1が偶数個使われている数を$b_{n}$個
(0個を含む)

(1)
$a_{n+1},b_{n+1}$を$a_{n},b_{n}$を用いて表せ

(2)
$a_{n},b_{n}$を求めよ

出典:1997年早稲田大学 理工学術院 過去問
この動画を見る 

15東京都教員採用試験(数学1-(5) 数列の和の最小値)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1} - (5)$
$a_n=n^3-20n$
$S_n$の最小値とそのときの$n$の値を求めよ.
この動画を見る 

福田のおもしろ数学539〜部分和がすべて正になるような数列を作れるか

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

総和が$1$である$2025$個の整数が円形に

並んでいる。

ある整数から出発して反時計回りでこれらの

整数を一列に並べ$a_1,a_2,a_3,\cdots, a_{2025}$とする。

これらの部分和$S_n=\displaystyle \sum_{k=1}^{n} a_k \quad (n=1,2,\cdots ,2025)$

がすべて正となるようにできるか?
     
この動画を見る 

ヨビノリたくみ 東大 非典型的な漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=\dfrac{\log_x}{x}(x \gt 0)$である.

(1)$f^{(n)}(x)=\dfrac{a_n+b_n\log x}{x^{n+1}}$と表される事を示し,漸化式を求めよ.
(2)$h_n=\displaystyle \sum_{\beta=1}^n \dfrac{1}{k}$を用いて,$a_n,b_n$の一般項を求めよ.

2005東大過去問
この動画を見る 
PAGE TOP