福田のわかった数学〜高校3年生理系032〜極限(32)関数の極限、色々な極限(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系032〜極限(32)関数の極限、色々な極限(2)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(2)\\
\lim_{x \to 2}([2x]-[x]) を求めよ。
\end{eqnarray}
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 色々な極限(2)\\
\lim_{x \to 2}([2x]-[x]) を求めよ。
\end{eqnarray}
投稿日:2021.06.12

<関連動画>

福田のわかった数学〜高校3年生理系042〜極限(42)有名な極限の証明(2)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 有名な極限を証明(2)\\
\lim_{x \to \infty}xe^{-x}=0を既知として\\
\lim_{x \to \infty}\frac{\log x}{x} を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜北里大学2021年医学部第3問〜関数の増減とはさみうちの原理による数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#微分法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 関数$f(x)=x^5-2x^3+9x$について考える。実数$t$に対して$y=f(x)$上の点($t, f(t)$)における接線と$x$軸の交点の$x$座標を$g(t)$とおく。
また、正の実数$t$に対して$h(t)=\displaystyle\frac{g(t)}{t}$とおく。次の問いに答えよ。
(1)$g(t)$を求めよ。
(2)$h'(t)=0$を満たす正の実数$t$を求めよ。
(3)実数$p$は、すべての正の実数$t$に対して|$h(t)$|$\leqq p$を満たすとする。
このような$p$の最小値を求めよ。
(4)$a$を定数とする。$a_1=a, a_{n+1}=g(a_n)$ $(n=1,2,3...)$で定められる数列
$\left\{a_n\right\}$に対して、$\displaystyle\lim_{n \to \infty}a_n=0$となることを示せ。

2021北里大学医学部過去問
この動画を見る 

数学「大学入試良問集」【17−6 直線上の点の極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)=-\displaystyle \frac{1}{2}x+3$とする。
$x_1=1$とおいて数列$x_n=f(x_{n-1})$ $n=2,3,・・・$をつくり、平面座標上に点$P_n(x_n,f(x_n))$をとる。
このとき、次の各問いに答えよ。
(1)
数列$\{x_n\}$の一般項$x_n$を求めよ。

(2)
動点$P$が点$P_1$を出発して、$P_2,P_3,・・・,P_n,・・・$と進むとき、動点$P$はどのような点に近づくか。
その座標を求めよ。

(3)
線分$P_nP_{n+1}$の長さを$l_n$ $n=1,2,3,・・・$とする。
$L=\displaystyle \sum_{n=1}^n l_n$を求めよ。
この動画を見る 

【数Ⅲ】関数と極限:逆関数の交点

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x)=\sqrt1{2(x+1)} - 1$について、次の問いに答えなさい。
(1) 関数 $y=f(x)$の逆関数 $y=f^{-1}(x) $を求めよ。
(2) 関数 $y=f(x)$と $y=f^{-1}(x)$ のグラフの共有点の座標を求めよ。
この動画を見る 

【高校数学】分数関数と一次関数の不等式をグラフを使わない裏ワザ!

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の不等式を解け。
$\displaystyle\frac{3x-4}{2x-3} < x$
この動画を見る 
PAGE TOP