【数Ⅱ】【微分法と積分法】方程式の解の個数8 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】方程式の解の個数8 ※問題文は概要欄

問題文全文(内容文):
曲線C:y=x³+3x²について、次の問いに答えよ。
(1)C上の点P(t,t³+3t)におけるCの接線が点A(0,a)を通る時、等式2t³+3t²+a=0が成り立つことを示せ。
(2)Aを通るCの接線が3本存在するとき、aの値の範囲を求めよ。
チャプター:

0:00 オープニング
0:04 問題概要
1:00 (1)解説
2:30 (2)解説

単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線C:y=x³+3x²について、次の問いに答えよ。
(1)C上の点P(t,t³+3t)におけるCの接線が点A(0,a)を通る時、等式2t³+3t²+a=0が成り立つことを示せ。
(2)Aを通るCの接線が3本存在するとき、aの値の範囲を求めよ。
投稿日:2025.02.25

<関連動画>

福田の一夜漬け数学〜図形と方程式〜直線の方程式(2)線対称と折れ線の最小、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 直線$\ell:x+2y-9=0,$ 2点$A(2,1),B(6,-1)$がある。次を求めよ。
(1)直線$\ell$に関して、点$A$と対称な点$C$の座標。
(2)直線$\ell$に関して、直線$m:x-y-1=0$と対称な直線$n$の方程式。
(3)直線$\ell$上の点$P$で$AP+BP$を最小にする点$P$の座標。
この動画を見る 

#高専数学_10#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x}{(x-2)^2} dx$
この動画を見る 

横浜市立(医)3次方程式の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+3ax^2+3ax+a^3=0$の実数解の個数を求めよ.

2004横浜市立(医)
この動画を見る 

大小比較の難問!どう解く?

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
e^πとπ^eの大小を比較せよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$xy平面上に、xの関数
$f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2$
のグラフ$y=f(x)$がある。$y=f(x)$が任意のaに対して
通る定点をP、点Pにおける接線が$y=f(x)$と交わる点をQとおく。
(1)点Pの座標は$\boxed{\ \ ツ\ \ }$であり、点Pにおける接線の方程式は$y=\boxed{\ \ テ\ \ }$である。
(2)$a=5$のとき、$y=f(x)$上の点における接線は、$x=\boxed{\ \ ト\ \ }$において傾きが
最小になる。
(3)$x=\boxed{\ \ ト\ \ }$において$f(x)$が極値をとるとき、$a=\boxed{\ \ ナ\ \ }$であり、
点$(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))$を$S$とおくと、三角形SPQの面積は$\boxed{\ \ ニ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP