【数Ⅱ】【微分法と積分法】微分と接線3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】微分と接線3 ※問題文は概要欄

問題文全文(内容文):
曲線y=-x³+4x上の点(-2,0)における接線が,この曲線と交わるもう1つの点のx座標を求めよ。
チャプター:

0:00 オープニング
0:04 まず微分
1:04 1つ目のポイント(グラフの交点を出す方法)
2:14 2つ目のポイント(方程式の解とグラフの交点)
3:14 因数定理により3次方程式を解く
4:28 実際に3次式を解いてみる(高次式の割り算)

単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線y=-x³+4x上の点(-2,0)における接線が,この曲線と交わるもう1つの点のx座標を求めよ。
投稿日:2025.02.22

<関連動画>

福田の数学〜慶應義塾大学2021年医学部第3問〜見上げる角が等しい点の軌跡と2次曲線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
水平な平面上の異なる2点${\rm A(0,1),Q}(x,y)$にそれぞれ高さ$h \gt 0,g \gt 0$の塔が平面に垂直に立っている。この平面上にあって$\rm A,Q$とは異なる点$\rm P$から2つの塔の先端を見上げる角度が等しくなる状況を考える。ただし、$h \neq g$とする。
(1)点$\rm Q$の座標が$ (t,1)$ (ただし$t \gt 0$)のとき、2つの塔を見上げる角度が等しくなるような点$\rm P$は、中心の座標が($\boxed{\ \ (あ)\ \ },\boxed{\ \ (い)\ \ }$)、半径が$\boxed{\ \ (う)\ \ }$の円周上にある。
(2)2つの塔を見上げる角度が等しくなるような点$\rm P$のうち、$y$軸上にあるものがただ1つあるとする。このとき$h$と$g$の間には不等式$\boxed{\ \ (え)\ \ }$が成り立ち、点$\textrm{Q}(x,y)$は2直線$y=\boxed{\ \ (お)\ \ }$, $y=\boxed{\ \ (か)\ \ }$のいずれかの上にある。
(3)2つの塔を見上げる角度が等しくなるような点$\rm P$のうち、$x$軸上にあるものがただ1つであるとする。このとき点$\textrm{Q}(x,y)$は方程式
$\boxed{\ \ (き)\ \ }x^2+\boxed{\ \ (く)\ \ }x+$$\boxed{\ \ (け)\ \ }y^2+$$\boxed{\ \ (こ)\ \ }y=1$
で表される2次曲線$C$の上にある。$C$が楕円であるのは$h$と$g$の間に不等式$\boxed{\ \ (さ)\ \ }$が成り立つときであり、そのとき$C$の2つの焦点の座標は$(\boxed{\ \ (し)\ \ },\boxed{\ \ (す)\ \ })$,$(\boxed{\ \ (せ)\ \ },\boxed{\ \ (そ)\ \ })$である。$\boxed{\ \ (さ)\ \ }$が成り立たないとき$C$は双曲線となり、その2つの焦点の座標は$(\boxed{\ \ (た)\ \ },\boxed{\ \ (ち)\ \ })$,$(\boxed{\ \ (つ)\ \ },\boxed{\ \ (て)\ \ })$である。さらに$\dfrac{h}{g}=\boxed{\ \ (と)\ \ }$のとき$C$は直角双曲線となる。

2021慶應義塾大学医学部過去問
この動画を見る 

大学入試問題#5 早稲田大学(2021) 三角関数

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{1}{2+\sin\alpha}+\displaystyle \frac{1}{2+\sin2\beta}=2$のとき
$|\alpha+\beta-8\pi|$の最小値を求めよ。

出典:2021年早稲田大学 入試問題
この動画を見る 

光文社新書「中学の知識でオイラー公式がわかる」Vol 17 指数法則なぜ0!=1

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
指数法則なぜ$0!=1$解説動画です
$a^3=a \times a \times a$
この動画を見る 

【数Ⅱ】【微分法と積分法】方程式の解の個数6 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
4次方程式x⁴-4x³-2x²+12x-a=0が異なる4個の実数解を持ち、そのうち2個は正、残りの2個は負であるとき、定数aの値の範囲を求めよ。
この動画を見る 

100万回生きたねこって何年生きた?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
下記質問の解説動画です
100万回生きた猫って何年生きているんですか?
この動画を見る 
PAGE TOP