【まず、2分でOK!一度は当たりたい!】整数:八代白百合学園高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【まず、2分でOK!一度は当たりたい!】整数:八代白百合学園高等学校~全国入試問題解法

問題文全文(内容文):
できるだけ小さい自然数$n$をかける.
できた数が,ある整数の2乗になる.
自然数$n$を求めなさい.

八代白百合学園高等学校過去問
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
できるだけ小さい自然数$n$をかける.
できた数が,ある整数の2乗になる.
自然数$n$を求めなさい.

八代白百合学園高等学校過去問
投稿日:2022.04.13

<関連動画>

【理数個別の過去問解説】2007年度千葉大学 数学 第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは奇数とする。このとき、次のことを証明せよ。
(1)n²-1は8の倍数である。
(2)n⁵-nは3の倍数である。
(3)n⁵-nは120の倍数である。
千葉大学(文理共通)2007年第2問より
この動画を見る 

明治学院大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{10^{130}}{13}$の小数第一位を求めよ.

2021明治学院大過去問
この動画を見る 

整数問題基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$m,n$をすべて求めよ.
$m^4+n^4-2mn=13$
この動画を見る 

奈良教育大 超基本問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
7で割ると3余り,17で割ると8余る.自然数,3桁最大は?

奈良教育大過去問
この動画を見る 

最小公倍数 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n,A,B$を自然数とする.
$A$と$B(1\leqq A\lt B)$の最小公倍数は$10^n$である.
$(A,B)$の組数を求めよ.
この動画を見る 
PAGE TOP