【数A】中高一貫校用問題集(論理・確率編)場合の数と確率:場合の数:硬貨の選び方 5円玉4枚、10円玉2枚、50円玉1枚、100円玉2枚の一部、または全部使って支払うことができる金額は何通りか - 質問解決D.B.(データベース)

【数A】中高一貫校用問題集(論理・確率編)場合の数と確率:場合の数:硬貨の選び方 5円玉4枚、10円玉2枚、50円玉1枚、100円玉2枚の一部、または全部使って支払うことができる金額は何通りか

問題文全文(内容文):
5円玉4枚、10円玉2枚、50円玉1枚、100円玉2枚の一部、または全部使って支払うことができる金額は何通りか。
チャプター:

0:00 オープニング
0:05 問題文
0:15 硬貨の組み合わせの考え方:例題
0:52 問題解説:5円と10円はまとめちゃう
1:44 名言

単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
5円玉4枚、10円玉2枚、50円玉1枚、100円玉2枚の一部、または全部使って支払うことができる金額は何通りか。
投稿日:2021.05.11

<関連動画>

数学「大学入試良問集」【5−9 確率と二項定理】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複数の参加者がグー、チョキ、パーを出して勝敗を決めるジャンケンについて、以下の問いに答えよ。
ただし、各参加者は、グー、チョキ、パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする。
(1)
4人で一度だけジャンケンするとき、1人だけが勝つ確率、2人が勝つ確率、3人が勝つ確率、引き分けになる確率をそれぞれ求めよ。

(2)
$n$人で一度だけジャンケンをするとき、$r$人が勝つ確率を$n$と$r$を用いて表せ。
ただし、$n \geqq 2,1 \leqq r \lt n$とする。

(3)
$\displaystyle \sum_{r=1}^{n-1}{}_{ n } C_r=2^n-2$が成り立つことを示し、$n$人でジャンケンをするとき、引き分けになる確率を$n$を用いて表せ。
ただし、$n \geqq 2$とする。
この動画を見る 

整数の問題& 場合の数 2024早稲田実業

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1⃣2⃣3⃣4⃣の4枚のカードを
$▢^▢×▢▢$のように並べる
式の値が3の倍数となる並べ方は何通り?
2024早稲田実業学校
この動画を見る 

確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
始めに赤箱から球を個取り出して戻す。
次回以降は取り出した玉と同じ色の箱から玉を取り出す。
$n$回目に赤が出る確率を求めよ
この動画を見る 

【高校数学】同じものを含む順列の例題~最短経路の問題~ 1-11.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
右の図のような街路で、PからQまで行く最短経路のうち、
次の各場合は何通りあるか。

(1)総数

(2)Rを通る経路

(3)R, Sをともに通る経路

(4)RまたはSを通る経路

(5)R, Sをともに通らない経路

(6)☆印の箇所を通らない経路
この動画を見る 

数学「大学入試良問集」【5−8 余事象の確率①】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#関西学院大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
偶数の目が出る確率が$\displaystyle \frac{2}{3}$であるような、目の出方にかたよりのあるサイコロが2個あり、これらを同時に投げるゲームを行う。
、これらを同時に投げるゲームを行う。
両方とも偶数の目が出たら当たり、両方とも奇数の目が出たら大当たりとする。
このゲームを$n$回繰り返すとき、次の問いに答えよ。

(1)大当たりが少なくとも1回は出る確率を求めよ。
(2)当たりまたは大当たりが少なくとも1回は出る確率を求めよ。
(3)当たりと大当たりのいずれもが少なくとも1回は出る確率を求めよ
この動画を見る 
PAGE TOP