大学入試問題#120 早稲田大学(2003) 対数の不等式 - 質問解決D.B.(データベース)

大学入試問題#120 早稲田大学(2003) 対数の不等式

問題文全文(内容文):
$a \gt 0,\ a \neq 1$
$log\ a(x+2) \geqq log\ a^2(3x+16)$を解け

出典:2003年早稲田大学 入試問題
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0,\ a \neq 1$
$log\ a(x+2) \geqq log\ a^2(3x+16)$を解け

出典:2003年早稲田大学 入試問題
投稿日:2022.02.19

<関連動画>

【高校数学】数Ⅲ-99 対数関数の導関数②

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。

①$y=(\log x)^2$

②$y=\dfrac{\log x}{x}$

③$y=\log(x+\sqrt{x^2+3})$

④$y=\log \dfrac{1+\sin x}{1- \sin x}$
この動画を見る 

高専数学 微積II #7 極値の判定

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#微分法と積分法#対数関数#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\sin x-\log(1+x)$は$x=0$で
極値をとるか調べよ.
この動画を見る 

13大阪府教員採用試験(数学:1-1番 対数の整数問題)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣(1) 10<x<100
$\log_{ 10 } x$と$\log_{ 10 } x^3$の小数部分が等しいときxの値を求めよ。
この動画を見る 

15和歌山県教員採用試験(数学:1 -(7) 対数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(7)$

$\log_{10}2=a,\log_{10}3=b$とする.
$\log_{3}32$を$a,b$で表せ.
この動画を見る 

福田のおもしろ数学390〜対数の性質

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b,c,d$は正の整数である。

$\log_a b=\dfrac{3}{2},\log_c d=\dfrac{5}{4},a-c=9$のとき、

$b-d$はいくつであるか?
この動画を見る 
PAGE TOP