大学入試問題#125 広島修道大学(2015) 整数問題 - 質問解決D.B.(データベース)

大学入試問題#125 広島修道大学(2015) 整数問題

問題文全文(内容文):
$n$:自然数
$2n-1$と$2n+1$は互いに素であることを示せ

出典:2015年広島修道大学 入試問題
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$n$:自然数
$2n-1$と$2n+1$は互いに素であることを示せ

出典:2015年広島修道大学 入試問題
投稿日:2022.02.24

<関連動画>

17愛知県教員採用試験(数学:1-2番 整数問題)

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣-(2)
$\frac{n}{225} < 1$ $(n \in \mathbb{N})$をみたす既約分数の個数
この動画を見る 

素数問題の良問だよ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
p,qは素数である.
$p^3-q^5=(p+q)^2$を満たす(p,q)の組をすべて求めよ.
この動画を見る 

福田の数学〜早稲田大学2021年商学部第1問(4)〜空間内の点の移動の場合の数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)座標空間において、各座標が整数である6個の点P_0,P_1,P_2,P_3,P_4,P_5を、\\
次の条件を満たすように重複を許して選ぶ。\\
(\textrm{i}) P_0=(0,0,0)\\
(\textrm{ii}) P_kとP_{k+1}との距離は1 (k=0,1,2,3,4,5)\\
(\textrm{iii}) P_0とP_5との距離は1\\
\\
このとき、選び方の総数は\boxed{\ \ エ\ \ }通りである。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 

福田の数学〜早稲田大学2023年人間科学部第1問(1)〜互いに素な整数を選ぶ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)2,3,4,...,13の12個の整数の中から異なる2個を無作為に取り出したとき、それら2個の整数が互いに素となる確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
この動画を見る 

葉っぱの面積

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部の面積=?
*図は動画内参照
この動画を見る 
PAGE TOP