単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 次の問題\hspace{310pt}\\
問題\\
表面と裏面が出る確率がそれぞれであるコインを投げる試行を繰り返し、同\\
じ面が3回連続して出た時点で試行を終了する。n回投げ終えた段階で試行が\\
終了する確率 p_nを求めよ。\\
に対する次の答案Aについて以下の問いに答えよ。\\
(1) もし答案Aに誤りがあれば誤りを指摘し、その理由を述べよ。ただし、すでに\\
指摘してある誤った結論から論理的に導き出した結論を誤りとして指摘する必要\\
はない。誤りがないときは「誤りなし」と答えよ。\\
(2) 答案Aで導かれたp_nと正解のp_nとで値が異なるとき、値が異なる最小のnを\\
求め、そのnに対する正解のpnの値を答えよ。そのようなnがないときは\\
「すべて一致する」と答えよ。\\
\\
答案A\\
自然数nに対して、コインをn回投げ終えた段階で、その後最短で試行が終了するために\\
必要な回数がk回(k \geqq 0)である確率をp_n(k)とする。このとき、\\
kは0,1,2のいずれかであるから、確率の総和は\\
p_n(0)+p_n(1)+p_n(2)=1\\
である。また、p_n(0)=p_n,p_{n+1}(0)=\frac{1}{2}p_n(1),p_{n+2}(0)=\frac{1}{4}p_n(2) であるから漸化式\\
p_n+2p_{n+1}+4p_{n+2}=1 (n \geqq 1)\\
を得る。ここで\frac{1}{7}+\frac{2}{7}+\frac{4}{7}=1なので、q_n=2^n(p_n-\frac{1}{7})とすれば\\
q_n+q_{n+1}+q_{n+2}=0\\
である。よってn \geqq 4に対して\\
q_n=-q_{n-1}-q_{n-2}=(q_{n-2}+q_{n-3})-q_{n-2}=q_{n-3}\\
が成立する。以上より、\\
Q(x)=
\left\{
\begin{array}{1}q_1 (nを3で割った時の余りが1のとき)\\
q_2 (nを3で割った時の余りが2のとき)\\
q_3 (nが3で割り切れるとき)\\
\end{array}
\right.\\
\\
とすれば求める確率は\\
p_n=\frac{q_n}{2^n}+\frac{1}{7}=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)\\
である。また最初の2項は定義よりp_1=p_2=0でありp_nの漸化式でn=1とすれば\\
p_1+2p_2+4p_3=1 であるからp_3=\frac{1}{4}である。さらに\\
q_1=-\frac{2}{7}, q_2=-\frac{4}{7}, q_3=\frac{6}{7}\\
\\
である。したがって\\
p_1=p_2=0, p_3=\frac{1}{4}, p_n=\frac{Q(n)}{2^n}+\frac{1}{7} (n \geqq 4)\\
となる。
\end{eqnarray}
2022浜松医科大学医学部過去問
この動画を見る