サクッとスッキリ - 質問解決D.B.(データベース)

サクッとスッキリ

問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+\dfrac{1}{c}=1 \\
b+\dfrac{1}{a}=1\\
c+\dfrac{1}{b}=5 \\
\end{array}
\right.
\end{eqnarray}$

$abc$はいくつか?
単元: #2次方程式と2次不等式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+\dfrac{1}{c}=1 \\
b+\dfrac{1}{a}=1\\
c+\dfrac{1}{b}=5 \\
\end{array}
\right.
\end{eqnarray}$

$abc$はいくつか?
投稿日:2022.05.09

<関連動画>

福田の数学〜神戸大学2023年理系第2問〜2次方程式の解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ a,bを実数とする。整式$f(x)$=$x^2$+$ax$+$b$ で定める。以下の問いに答えよ。ただし、2次方程式の重解は2つと数える。
(1)2次方程式$f(x)$=0が異なる2つの正の解をもつためのaとbが満たすべき必要十分条件を求めよ。
(2)2次方程式$f(x)$=0の2つの解の実部が共に0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。
(3)2次方程式$f(x)$=0の2つの解の実部が共に-1より大きく、0より小さくなるような点(a, b)の存在する範囲をab平面上に図示せよ。

2023神戸大学理系過去問
この動画を見る 

東工大 二次方程式と四次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^2+2x+a$
$f(x)=0$が相違なる実根をもち、$f(f(x))=0$が重解$\gamma$をもつ。
$\gamma,a$の値を求めよ。

出典:東京工業大学 過去問
この動画を見る 

東大 微分 代講ヨビノリたくみ Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'98東京大学過去問題
aは0でない実数
関数
$f(x)=(3x^2-4)(x-a+\frac{1}{a})$の極大値と極小値の差が最小となるaを求めよ。
この動画を見る 

【短時間でマスター!!】連立2次不等式の書き方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + 3x + 2 > 0 \\
x^2 + 2x - 3 < 0
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第1問(3)〜集合の要素の個数と2次方程式の解

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)整数kに対して、xの2次方程式x^2+kx+k+35=0の解を\alpha_k,\beta_kとおく。\\
ただし、方程式が重解をもつときは\alpha_k=\beta_kである。また\\
U=\left\{k|kは整数、かつ|k| \leqq 100 \right\}\\
を全体集合とし、その部分集合\\
A=\left\{k|k \in Uかつ\alpha_k,\beta_kはともに実数で\alpha_k≠\beta_k\right\}\\
B=\left\{k|k \in Uかつ\alpha_k,\beta_kの実数はともに2より大きい\right\}\\
C=\left\{k|k \in Uかつ\alpha_k,\beta_kの実部と虚部はすべて整数\right\}\\
を考える。このときn(A)=\boxed{\ \ (か)\ \ },n(A \cap B)=\boxed{\ \ (き)\ \ },n(\bar{ A } \cap B)=\boxed{\ \ (く)\ \ },\\
n(A \cap C)=\boxed{\ \ (け)\ \ },n(\bar{ A } \cap C)=\boxed{\ \ (こ)\ \ }である。ただし有限集合Xに対して\\
その要素の個数をn(X)で表す。また\bar{ A }はAの補集合である。
\end{eqnarray}

2021慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP