福田の数学・入試問題解説〜東北大学2022年理系第6問〜円柱と球の共通部分の体積 - 質問解決D.B.(データベース)

福田の数学・入試問題解説〜東北大学2022年理系第6問〜円柱と球の共通部分の体積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ 半径1の円を底面とする高さが\sqrt3の直円柱と、半径がrの球を考える。\\
直円柱の底面の中心と球の中心が一致するとき、直円柱の内部と球の内部の\\
共通部分の体積V(r)を求めよ。
\end{eqnarray}

2022東北大学理系過去問
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ 半径1の円を底面とする高さが\sqrt3の直円柱と、半径がrの球を考える。\\
直円柱の底面の中心と球の中心が一致するとき、直円柱の内部と球の内部の\\
共通部分の体積V(r)を求めよ。
\end{eqnarray}

2022東北大学理系過去問
投稿日:2022.03.25

<関連動画>

#高専#ウォリス積分_15#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\displaystyle \int_{0}^{\frac{\pi}{2}} \sin^7 x$ $dx$

(2)$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos^8 x$ $dx$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題055〜大阪大学2017年度理系第5問〜回転体と回転体の交わりの部分の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ xy平面上で放物線y=$x^2$と直線y=2で囲まれた図形を、y軸のまわりに1回転してできる回転体をLとおく。回転体Lに含まれる点のうち、xy平面上の直線x=1からの距離が1以下のもの全体がつくる立体をMとおく。
(1)$t$を$0 \leqq t \leqq 2$を満たす実数とする。xy平面上の点(0, $t$)を通り、
y軸に直交する平面によるMの切り口の面積を$S(t)$とする。$t=(2\cos\theta)^2$ $\left(\displaystyle\frac{\pi}{4} \leqq \theta \leqq \displaystyle\frac{\pi}{2}\right)$のとき、$S(t)$を$\theta$を用いて表せ。
(2)Mの体積Vを求めよ。

2017大阪大学理系過去問
この動画を見る 

福田の数学〜九州大学2024年理系第5問〜定積分で定義された数列の極限

アイキャッチ画像
単元: #関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 自然数$m$, $n$に対して
$I(m,n)$=$\displaystyle\int_1^ex^me^x(\log x)^ndx$
とする。以下の問いに答えよ。
(1)$I(m+1,n+1)$を$I(m,n+1)$, $I(m,n)$, $m$, $n$を用いて表せ。
(2)すべての自然数$m$に対して、$\displaystyle\lim_{n \to \infty}I(m,n)$=0 が成り立つことを示せ。
この動画を見る 

【数Ⅲ-166】積分と面積②(やや複雑編)

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積②・やや複雑編)

Q
次の曲線と直線で囲まれた部分の面積を求めよ。

①曲線$x=y^2-1$、直線$x-y-1=0$
②2曲線$y=x^2$、$y=\frac{2x}{x^2+1}$
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第5問〜立体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 座標空間内の点A(0,0,2)と点B(1,0,1)を結ぶ線分ABをz軸の周りに\\
1回転させて得られる局面をSとする。S上の点Pとxy平面上の点QがPQ=2を\\
満たしながら動くとき、線分PQの中点Mが通過しうる範囲をKとする。\\
Kの体積を求めよ。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 
PAGE TOP