合同式 7の倍数でない証明 - 質問解決D.B.(データベース)

合同式 7の倍数でない証明

問題文全文(内容文):
$n^2+2n-2$は$7$の倍数でないことを示せ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+2n-2$は$7$の倍数でないことを示せ.
投稿日:2020.06.09

<関連動画>

9で割り切れるのはなぜ?京都大(改)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n^9 - n^3$は9で割り切れるのはなぜ?(n:整数)

京都大学
この動画を見る 

17大阪府教員採用試験(数学:3番 整数問題)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$x,y,z,a \Leftarrow IR$
$x+y+z=a$
$\dfrac{1}{x}+\dfrac{1}{y}+dfrac{1}{z}=\dfrac{1}{a}$をみたすとき,

(1)$x,y,z$のどれか1つは$a$と等しい.
(2)$n$が奇数のとき,$\dfrac{1}{x^n}+\dfrac{1}{y^n}+\dfrac{1}{z^n}=\dfrac{1}{x^n+y^n+z^n}$
この動画を見る 

数学オリンピック 整数問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1111^{2018}$を$11111$で割った余りを求めよ.
この動画を見る 

高校入試では珍しい問題 巣鴨高校

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,bを整数とする。
$\sqrt 2 (a+b+1) = a-b-5$を満たすときa,bの値を求めよ。

巣鴨高等学校
この動画を見る 

一橋大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数

(1)
$n^2$と$2n+1$は互いに素、示せ

(2)
$n^2+2$が$2n+1$の倍数となる$n$を求めよ

出典:1992年一橋大学 過去問
この動画を見る 
PAGE TOP