大学入試問題#327 埼玉大学(2010) #定積分 - 質問解決D.B.(データベース)

大学入試問題#327 埼玉大学(2010) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x}{9+16\sin^2x}dx$

出典:2010年埼玉大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\displaystyle \frac{\sin\ x}{9+16\sin^2x}dx$

出典:2010年埼玉大学 入試問題
投稿日:2022.10.05

<関連動画>

#茨城大学(2023) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{3} \displaystyle \frac{x+2}{\sqrt{ x+1 }} dx$

出典:2023年茨城大学
この動画を見る 

大学入試問題#620「ほぼ一択」 横浜国立大学(2023) #定積分 僚太さんの紹介

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{log\frac{\pi}{4}}^{log\frac{\pi}{2}} \displaystyle \frac{e^{2x}}{\{\sin(e^x)\}^2} dx$

出典:2023年横浜国立大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題020〜東京工業大学2016年度理系数学第5問〜媒介変数で表された曲線の追跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東京工業大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
次のように媒介変数表示されたxy平面上の曲線をCとする。
$\left\{\begin{array}{1}
x=3\cos t-\cos3t
y=3\sin t-\sin3t
\end{array}\right.$
ただし、$0 \leqq t \leqq \frac{\pi}{2}$である。
(1)$\frac{dx}{dt}$および$\frac{dy}{dt}$を計算し、Cの概形を図示せよ。
(2)Cとx軸とy軸で囲まれた部分の面積を求めよ。

2016東京工業大学理系過去問
この動画を見る 

大学入試問題#857「スッキリとした解答になるはず」 #大阪市立大学(1998) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{1}{\mathit{u}^{(\frac{3}{2})}}\{\sin(log\ \mathit{u})+\displaystyle \frac{1}{2}\cos(log\ \mathit{u})\}du$

出典:1998年大阪市立大学
この動画を見る 

大学入試問題#211 宮崎大学(2018) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\sqrt{ 1+\sin\ x }\ dx$を計算せよ

出典:2018年宮崎大学 入試問題
この動画を見る 
PAGE TOP