問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{5}{x-\sqrt 2}+ \frac{2}{x+\sqrt 2y}=1\\
\frac{1}{x-\sqrt 2}+ \frac{5}{x+\sqrt 2y}=2
\end{array}
\right.
\end{eqnarray}
$
2021慶應義塾高等学校
$
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{5}{x-\sqrt 2}+ \frac{2}{x+\sqrt 2y}=1\\
\frac{1}{x-\sqrt 2}+ \frac{5}{x+\sqrt 2y}=2
\end{array}
\right.
\end{eqnarray}
$
2021慶應義塾高等学校
単元:
#数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師:
数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{5}{x-\sqrt 2}+ \frac{2}{x+\sqrt 2y}=1\\
\frac{1}{x-\sqrt 2}+ \frac{5}{x+\sqrt 2y}=2
\end{array}
\right.
\end{eqnarray}
$
2021慶應義塾高等学校
$
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{5}{x-\sqrt 2}+ \frac{2}{x+\sqrt 2y}=1\\
\frac{1}{x-\sqrt 2}+ \frac{5}{x+\sqrt 2y}=2
\end{array}
\right.
\end{eqnarray}
$
2021慶應義塾高等学校
投稿日:2021.02.22