【数C】【複素数平面】複素数と図形10 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】複素数と図形10 ※問題文は概要欄

問題文全文(内容文):
複素数平面上の異なる3点O(0)、A(α)、B(β)について、次の等式が成り立つとき、三角形OABはどのような三角形か。
(1)α²+β²=0
(2)α²-2αβ+2β²=0
チャプター:

0:00 オープニング
0:04 この問題の方針
1:11 (1)の解説!
4:21 (2)の解説!
7:30 エンディング

単元: #複素数平面#図形への応用#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#複素数平面
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面上の異なる3点O(0)、A(α)、B(β)について、次の等式が成り立つとき、三角形OABはどのような三角形か。
(1)α²+β²=0
(2)α²-2αβ+2β²=0
投稿日:2025.05.16

<関連動画>

【数C】【複素数平面】複素数と図形3 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点$z$が、原点$\rm O$を中心とする半径1の円上を動くとき、次の点$w$はどのような図形を描くか。
(1) $w=\dfrac{1+i}{z}$ (2) $w=\dfrac{6z-1}{2z-1}$
この動画を見る 

福田の数学〜東工大2022理系1修正版

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とし、$f(z)=z^2+az+b$ とする。a,bが
$|a| \leqq 1,  |b| \leqq 1$
を満たしながら動くとき、$f(z)=0$を満たす複素数zが取りうる値の範囲を
複素平面上に図示せよ。

2022東京工業大学理系過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(3)

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$A(\alpha),B(\beta),C(\gamma)$が
$3\alpha^2+\beta^2+\gamma^2-3\alpha\beta$$+\beta\gamma$$-3\alpha\gamma$$=0$
を満たす。$\triangle ABC$はどのような三角形か。
この動画を見る 

【数C】【複素数平面】複素数と図形2 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を満たす点$z$全体の集合はどのような図形か。
(1) $z+\bar{z}=2$ (2) $z-\bar{z}=2i$
この動画を見る 

数学「大学入試良問集」【16−4 複素数平面と軌跡・領域】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学#数C
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
複素数平面上で不等式$2|z-2| \leqq |z-5| \leqq |z+1|$を満たす点$z$が描く図形を$D$とする。
(1)$D$を図示せよ。
(2)点$z$が$D$上を動くものとする。$argz=\theta$とするとき、$\tan\theta$のとりうる範囲を求めよ。
(3)$D$の面積を求めよ。
この動画を見る 
PAGE TOP