微分方程式⑦-2【2階微分方程式の一般解を求める】(高専数学、数検1級) - 質問解決D.B.(データベース)

微分方程式⑦-2【2階微分方程式の一般解を求める】(高専数学、数検1級)

問題文全文(内容文):
(1)$\dfrac{d^2x}{dt^2}-3\dfrac{dx}{dt}+x=t^2-2t$
の一般項を求めよ.
(2)$\dfrac{d^2x}{dt^2}+2\dfrac{dx}{dt}-8x=4t-3$
の一般項を求めよ.
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)$\dfrac{d^2x}{dt^2}-3\dfrac{dx}{dt}+x=t^2-2t$
の一般項を求めよ.
(2)$\dfrac{d^2x}{dt^2}+2\dfrac{dx}{dt}-8x=4t-3$
の一般項を求めよ.
投稿日:2020.12.20

<関連動画>

【数Ⅲ】【微分とその応用】色々な関数の微分1 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を微分せよ
y= sin²3x
y= sin⁵x+cos5x
y= sin⁴xcos⁴x
y= √(1+sin²x)
y= sin√(x²+x+1)
y= (tanx + 1/tanx)²
y= cosx/(1-sinx)
y= (1-sinx) / (1+cosx)

次の極限値を求めよ
lim_(x→a) (sinx - sina) / sin(x-a)
lim_(x→a) (x²sina - a²sinx) / (x-a)

次の関数を微分せよ。ただしa,bは定数で、a>0,a≠0 とする。
y= e^(-2x) sin2x
y= 10^sinx
y= log_x(a)
y= log(logx)
y= log_a(sinx)
y= log(1-cosx)
y= log_a(x+√(x²-a²)
y= log ((x²-b) / (x²+b))
この動画を見る 

【数Ⅲ-130】速度と加速度③(円運動編)

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度③・円運動編)

$o$が原点の座標平面上の動点$P$の時刻$t$における位置が$x=3\cos2t$、$y=3\sin2t$で表されるとき、次の問いに答えよ。

①速度$\vec{v},$加速度$\vec{a}$を求めよ。

②$\overrightarrow{OP} \perp \vec{v},\vec{v}\perp \vec{a}$を示せ。
この動画を見る 

信州大 三次方程式の解の極限値

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#信州大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2x^3+3nx^2-3(n+1)=0(n$自然数$)$

(1)
$n$の値に関わらず正の解をただ一つだけもつことを示せ

(2)
正の解を$\alpha_n$とする。
$\displaystyle \lim_{ n \to \infty }\alpha_n$を求めよ

出典:1998年信州大学 過去問
この動画を見る 

福田のわかった数学〜高校3年生理系089〜グラフを描こう(11)分数関数、凹凸、漸近線

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(11)

$y=\frac{x^3}{x^2-1}$ のグラフを描け。ただし、凹凸、漸近線も調べよ。
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第3問〜関数の増減と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立体図形#体積・表面積・回転体・水量・変化のグラフ#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数$a$,$b$>0に対し、$a$≦$b$の場合は$a$≦$x$≦$b$の範囲、$a$>$b$の場合は$b$≦$x$≦$a$の範囲における$y$=$\log x$のグラフを$C_{a,b}$とする。このとき、次の問いに答えよ。
(1)点(2,-1)と$C_{2,b}$上の点との距離の最小値を$b$を用いて表せ。
(2)直線$x$=$a$と直線$x$=$b$の間で、$C_{a,b}$と$x$軸によって囲まれる部分を$x$軸の周りに1回転して得られる立体の体積を$S_{a,b}$とする。$S_{1,b}$を$b$を用いて表せ。
(3)$S_{a,b}$を(2)で定義したものとする。$S_{a,a+1}$が最小値をとる$a$の値を求めよ。
この動画を見る 
PAGE TOP