10万人ありがとうございます。鬼が笑う2021問題 - 質問解決D.B.(データベース)

10万人ありがとうございます。鬼が笑う2021問題

問題文全文(内容文):
$\sqrt[ 20 ]{ 20! }$と$\sqrt[ 21 ]{ 21! }$ どちらが大きいか求めよ
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[ 20 ]{ 20! }$と$\sqrt[ 21 ]{ 21! }$ どちらが大きいか求めよ
投稿日:2020.01.06

<関連動画>

灘高校の式の値  伝えたいこと、たくさん

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-y^2=6(x-y)$ , $x^2+y^2 = 22$ (x>y)
$x-y=?$
$x^4-y^4+2x^3+2y^3=?$

灘高等学校
この動画を見る 

2023早稲田(社)三乗根の計算

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とする.
(1)$a^3$をaの一次式で表せ.
(2)aは整数であることを示せ.
(3)$b=\sqrt[3]{5\sqrt2+7}-\sqrt[3]{5\sqrt2-7}$とするとき,bを越えない最大の整数を求めよ.

2023早稲田大(社)過去問
この動画を見る 

【数Ⅰ】三角比の導入から拡張まで【単位円ってどこから出てきたん?】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の導入から拡張まで解説していきます.
この動画を見る 

福田の数学〜北海道大学2023年文系第3問〜絶対値の和の最小値

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#場合の数と確率#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ nを2以上の自然数とする。1個のさいころをn回投げて出た目の数を順に$a_1$, $a_2$, ...., $a_n$とし、
$K_n$=|1-$a_1$|+|$a_1$-$a_2$|+...+|$a_{n-1}$-$a_n$|+|$a_n$-6|
とおく。また$K_n$のとりうる値の最小値を$q_n$とする。
(1)$K_2$=5 となる確率を求めよ。
(2)$K_3$=5 となる確率を求めよ。
(3)$q_n$を求めよ。また、$K_n$=$q_n$となるための$a_1$, $a_2$, ...., $a_n$に関する必要十分条件を求めよ。

2023北海道大学文系過去問
この動画を見る 

東大数学科院生わくたさん登場

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
0でない実数x,y,zについて,
$x^2y^2+y^2z^2+z^2x^2=xyz(x+y+z)$が成り立つとき,
$x=y=z$を示せ.
この動画を見る 
PAGE TOP