20年5月数検準1級1次試験(楕円) - 質問解決D.B.(データベース)

20年5月数検準1級1次試験(楕円)

問題文全文(内容文):
6⃣
2点A(0,-3)、B(0,1)から距離の和が6である楕円の方程式を求めよ
単元: #数学検定・数学甲子園・数学オリンピック等#平面上の曲線#2次曲線#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
6⃣
2点A(0,-3)、B(0,1)から距離の和が6である楕円の方程式を求めよ
投稿日:2020.06.09

<関連動画>

【数Ⅲ】2次曲線:点Pが円x²+y²=4上を動く。yだけを1/2した点Qの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが円$x²+y²=4$上を動く。yだけを$\dfrac{1}{2}$した点Qの軌跡を求めよ。
この動画を見る 

名古屋大 双曲線 東大大学院数学科卒 杉山さん

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=\displaystyle \frac{a^x+a^{-x}}{a^x-a^{-x}}$
$a \gt 0,a \neq 1$

(1)
$f(x)$のとりうる範囲を求めよ

(2)
$f(x)-bx=0$が解をもつ条件を求めよ

出典:1994年名古屋大学 過去問
この動画を見る 

【数Ⅲ】極方程式をゼロからはじめましょう

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
極方程式を基礎から解説します
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第3問〜2次曲線の極方程式と置換積分

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#明治大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$a,\ h$を正の実数とする。座標平面において、原点Oからの距離が
直線$x=h$からの距離の$a$倍であるような点$P$の軌跡を考える。点$P$の座標を$(x,\ y)$とする
と、$x,\ y$は次の方程式を満たす。
$(1-\boxed{ア})\ x^2+2\ \boxed{イ}\ x+y^2=\boxed{ウ}...(1)$

$\boxed{ア},\ \boxed{イ},\ \boxed{ウ}$の解答群
$⓪a^2 ①h^2 ②a^3 ③a^2h ④ah^2$
$⑤h^3 ⑥b^4 ⑦a^2h^2 ⑧ah^3 ⑨h^4$

次に、座標平面の原点$O$を極、$x$軸の正の部分を始線とする極座標を考える。
点$P$の極座標を$(r\ \theta)$とする。$r \leqq h$を満たすとき、
点$P$の直交座標$(x,\ y)$を$a,\ h,\ θ$を用いて表すと

$(x,\ y)=(\frac{\boxed{エ}}{\boxed{オ}}\ \cos θ,\ \frac{\boxed{エ}}{\boxed{オ}}\ \sin θ)...(2) $
$\boxed{エ},\ \boxed{オ}$の解答群
$⓪h①ah②h^2③ah^2④1+a\cos θ$
$⑤1+a\sin θ ⑥a\cos θ-1⑦a\sin θ-1⑧1-a\cos θ ⑨1-a\sin θ$

(1)から、$a=\boxed{カ}$のとき、点$P$の軌跡は放物線$x=\boxed{キ}\ y^2+\boxed{ク}$となる。
この放物線とy軸で囲まれた図形の面積$S$は
$S=2\int_0^{\boxed{ケ}}xdy=2\int_0^{\boxed{ケ}}(\boxed{キ}\ y^2+\boxed{ク})dy=$
$\frac{\boxed{コ}}{\boxed{サ}}\ h^2$
である。したがって、(2)を利用すれば、置換積分法により次の等式が成り立つことが分かる。
$\int_0^{\frac{\pi}{2}}\frac{\cos θ}{(1+\cos θ)^2}dθ=\frac{\boxed{シ}}{\boxed{ス}}$

$\boxed{キ},\ \boxed{ク},\ \boxed{ケ}$の解答群
$⓪h ①2h ②\frac{h}{2} ③-\frac{h}{2} ④\frac{1}{h}$
$⑤-\frac{1}{h} ⑥\frac{1}{2h} ⑦-\frac{1}{2h} ⑧h^2 ⑨-h^2$

2022明治大学全統理系過去問
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第7問〜双曲線と図形問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上の曲線#図形と計量#2次曲線#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{7}} 原点をOとする座標平面上で、2点(\sqrt5,0),(-\sqrt5,0)を焦点とし、2点A(1,0),A'(-1,0)を\\
頂点とする双曲線をHとする。Hの方程式を\frac{x^2}{a^2}-\frac{y^2}{b^2}=1と表すとき、a^2=\boxed{\ \ ネ\ \ },\ b^2=\boxed{\ \ ノ\ \ }\\
である。双曲線Hの漸近線のうち、傾きが正であるものの方程式はy=\boxed{\ \ ハ\ \ }xである。\\
点P(p,q)は双曲線Hの第1象限の部分を動く点とする。点Pからx軸に下ろした垂線の足をQ、\\
直線PQと双曲線Hの漸近線との交点のうち、第1象限にあるものをRとする。点Pにおける\\
Hの接線と直線x=1との交点をMとし、直線OMと直線APとの交点をNとする。三角形OQR\\
の面積をS、三角形OANの面積をTとするとき、\frac{T}{S}は、p=\boxed{\ \ ヒ\ \ }のとき、最大値\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}をとる。
\end{eqnarray}

2021早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP