福田のわかった数学〜高校2年生030〜円と放物線の位置関係(2) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生030〜円と放物線の位置関係(2)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(2)\\
\\
\left\{\begin{array}{1}
円\ x^2+(y-r)^2=r^2 (r \gt 0)\\
放物線\ y=x^2
\end{array}\right.\\
\\
の共有点が原点のみとなるrの範囲
\end{eqnarray}
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(2)\\
\\
\left\{\begin{array}{1}
円\ x^2+(y-r)^2=r^2 (r \gt 0)\\
放物線\ y=x^2
\end{array}\right.\\
\\
の共有点が原点のみとなるrの範囲
\end{eqnarray}
投稿日:2021.06.11

<関連動画>

福田のわかった数学〜高校2年生027〜定点通過(直線群、円群)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
2つの円\ x^2+y^2-4x-2y=0 \ldots①\\
x^2+y^2-x+y-6=0 \ldots②\\
の交点をA,Bとするとき、次を求めよ。\\
(1)直線AB  (2)A,B,(6,0)を通る円
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生021〜円の接線と極線に関するまとめ

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$C:x^2+y^2=r^2$と点$P(x_1,y_1)$に対して
$x_1x+y_1y=r^2$
は次のそれぞれの場合にどんな直線か。
(1)点$P$が$C$上 (2)点$P$が$C$の外部
(3)点$P$が$C$の内部、ただし原点を除く
この動画を見る 

福田のわかった数学〜高校2年生031〜円と放物線の位置関係(3)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(3)\\
\left\{\begin{array}{1}
円\ x^2+(y-a)^2=r^2 (a \gt 0,r \gt 0) \ldots①\\
放物線\ y=\displaystyle\frac{1}{2}x^2 \ldots②\\
\end{array}\right.\\
が次の条件を満たすときaの範囲、rをaで表せ。\\
\\
(1)原点Oで接し、かつ他に共有点を持たない。\\
(2)異なる2点で接する。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生024〜2つの円の共通接線の求め方

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 2つの円の共通接線

円$C_1:(x-1)^2+y^2=1$
円$C_2:(x-4)^2+y^2=4$

の共通接線の方程式を求めよ。
この動画を見る 

福田のおもしろ数学154〜2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$x$, $y$が実数で、$x^2$+$(y-1)^2$≦1 のとき、$z$=$\displaystyle\frac{x+y+1}{x-y+3}$ の最大値、最小値を求めよ。
この動画を見る 
PAGE TOP