n進法に苦手意識ある人必見!難しいことはありません【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

n進法に苦手意識ある人必見!難しいことはありません【京都大学】【数学 入試問題】

問題文全文(内容文):
$n$を4以上の自然数とする。数2,12,1331がすべて$n$進法で表記されているとして,

$2^{12}=1331$

が成り立っている。このとき$n$はいくつか。十進法で答えよ。

京都大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を4以上の自然数とする。数2,12,1331がすべて$n$進法で表記されているとして,

$2^{12}=1331$

が成り立っている。このとき$n$はいくつか。十進法で答えよ。

京都大過去問
投稿日:2022.10.12

<関連動画>

【数A】図形の性質:チェバの定理とメネラウスの定理ってこういうことだったの? ただの暗記だと思ってたけど全然違った・・・

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材: #サクシード#サクシード数学Ⅰ・A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
チェバメネラウスの定理の解説動画です。
この動画を見る 

京大 信州大 整数 2次方程式 高校数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
①$n$と$n^2+2$がともに素数となるような自然数$n$を求めよ。

信州大学過去問題
②$x^2+(2a-1)x+a^2-3a-4=0$が少なくとも1つの正の解をもつ条件。
この動画を見る 

福田の数学〜青山学院大学2021年理工学部第1問〜さいころの目の最大最小の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$1個のさいころを4回投げるとき、出た目の最小値をm、最大値をMとする。
(1)$m \geqq 2$となる確率は$\frac{\boxed{\ \ アイウ\ \ }}{\boxed{\ \ エオカキ\ \ }}$であり、
$m=1$となる確率は$\frac{\boxed{\ \ クケコ\ \ }}{\boxed{\ \ サシスセ\ \ }}$である。
(2)$m \geqq 2$かつ$M \leqq 5$となる確率は$\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チツ\ \ }}$であり、$m \geqq 2$かつ$M=6$となる確率は
$\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナニヌ\ \ }}$である。

(3)$m=1$かつ$M=6$となる確率は$\frac{\boxed{\ \ ネノハ\ \ }}{\boxed{\ \ ヒフヘ\ \ }}$である。

2021青山学院大学理工学部過去問
この動画を見る 

【数B】【数列】自然数の式の証明2 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$は整数とする。
(1)連続する2個の整数には、必ず$2$の倍数が含まれることを利用して、 $n^2+3n$が$2$の倍数であることを証明せよ。
(2)連続する3個の整数には、必ず$3$の倍数が含まれることを利用して、 $4n^3+3n^2+2n$が$3$の倍数であることを証明せよ。
この動画を見る 

福田のおもしろ数学320〜完全平方数となる条件

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
自然数 $n$ に対して $n \cdot 2^n +1$ が平方数となるような $n$ をすべて求めて下さい。
この動画を見る 
PAGE TOP