問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} (1)\ 同じ人形\ n\ 体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。\\
例えばn=10のとき、下図(※動画参照)のような並べ方がある。\\
\\
\\
ここで、n体の人形の並べ方の総数をa_nとすると\\
a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。\\
\\
(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。\\
その並べ方の総数をb_nとすると\\
b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
\end{eqnarray}
2021慶應義塾大学整合政策学部過去問
\begin{eqnarray}
{\Large\boxed{5}} (1)\ 同じ人形\ n\ 体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。\\
例えばn=10のとき、下図(※動画参照)のような並べ方がある。\\
\\
\\
ここで、n体の人形の並べ方の総数をa_nとすると\\
a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。\\
\\
(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。\\
その並べ方の総数をb_nとすると\\
b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
\end{eqnarray}
2021慶應義塾大学整合政策学部過去問
単元:
#大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}} (1)\ 同じ人形\ n\ 体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。\\
例えばn=10のとき、下図(※動画参照)のような並べ方がある。\\
\\
\\
ここで、n体の人形の並べ方の総数をa_nとすると\\
a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。\\
\\
(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。\\
その並べ方の総数をb_nとすると\\
b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
\end{eqnarray}
2021慶應義塾大学整合政策学部過去問
\begin{eqnarray}
{\Large\boxed{5}} (1)\ 同じ人形\ n\ 体(nは正の整数)を、1体または2体ずつ前方を向かせて列に並べる。\\
例えばn=10のとき、下図(※動画参照)のような並べ方がある。\\
\\
\\
ここで、n体の人形の並べ方の総数をa_nとすると\\
a_1=1,\ a_2=2,\ a_3=3,\ldots,\ a_{12}=\boxed{\ \ アイウ\ \ },\ a_{13}=\boxed{\ \ エオカ\ \ },\ a_{14}=\boxed{\ \ キクケ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。\\
\\
(2)同じ人形n体(nは2以上の整数)を、2体または3体ずつ前方を向かせて列に並べる。\\
その並べ方の総数をb_nとすると\\
b_2=1,\ b_3=1,\ b_4=1,\ldots,\ b_{12}=\boxed{\ \ コサシ\ \ },\ b_{13}=\boxed{\ \ スセソ\ \ },\ b_{14}=\boxed{\ \ タチツ\ \ }\\
となる。ただし、列の先頭の人形の前には門があり、その門の方向を前方とする。
\end{eqnarray}
2021慶應義塾大学整合政策学部過去問
投稿日:2021.07.20