信州大 三角関数 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

信州大 三角関数 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
$0 \lt a \lt b \lt 2\pi$
すべての実験$x$について
$\cos x + \cos(x+ \alpha)+ \cos(x+ \beta)=0$が成立するような$\alpha, \beta$の値を求めよ

出典:信州大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \lt a \lt b \lt 2\pi$
すべての実験$x$について
$\cos x + \cos(x+ \alpha)+ \cos(x+ \beta)=0$が成立するような$\alpha, \beta$の値を求めよ

出典:信州大学 過去問
投稿日:2019.01.16

<関連動画>

福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$a
aを正の実数、bを1より大きい実数としたとき、放物線$y=-ax^2+b$が、
下図(※動画参照)のように原点を中心とした半径1の円$x^2+y^2=1$と2箇所で
接している。(すなわち共有点において共通の接線を持つ)

(1)一般に、$b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}$である。

(2)特に、$a=\frac{\sqrt2}{2}$とすると、放物線と円の接点は
$(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})$
であり、円と放物線に囲まれた上図の斜線部の面積は
$\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}$となる。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
$63^{13}$ VS $33^{16}$
この動画を見る 

整式の剰余 大分大(医)の復習問題

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^n$を$x^4+1$で割った余りを求めよ.

大分大(医)過去問
この動画を見る 

早稲田(政経)対数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \gt 0,a \neq 1$ 不等式を解け
$log_a(x+2) \geqq log_{a^2}(3x+16)$

出典:2003年早稲田大学 政治経済学部 過去問
この動画を見る 

#京都帝国大学1935#不定積分_52

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{}^{} \sin x \ \cos 2x \ dx$を解け.

1935京都帝国大学過去問題
この動画を見る 
PAGE TOP