福田の数学〜一橋大学2022年文系第4問〜立方体の内部の点と結んだ線分の通過範囲 - 質問解決D.B.(データベース)

福田の数学〜一橋大学2022年文系第4問〜立方体の内部の点と結んだ線分の通過範囲

問題文全文(内容文):
tを実数とし、座標空間に点$A(t-1,t,t+1)$をとる。また、(0,0,0),(1,0,0),
(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)を頂点とする立方体を
Dとする。点PがDの内部及びすべての面上を動くとき、線分APの動く範囲を
Wとし、Wの体積をf(t)とする。
(1)f(-1)を求めよ。
(2)f(t)のグラフを描き、f(t)の最小値を求めよ。

2022一橋大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
tを実数とし、座標空間に点$A(t-1,t,t+1)$をとる。また、(0,0,0),(1,0,0),
(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)を頂点とする立方体を
Dとする。点PがDの内部及びすべての面上を動くとき、線分APの動く範囲を
Wとし、Wの体積をf(t)とする。
(1)f(-1)を求めよ。
(2)f(t)のグラフを描き、f(t)の最小値を求めよ。

2022一橋大学文系過去問
投稿日:2022.04.17

<関連動画>

福田のおもしろ数学176〜ルートが無限に重なる等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\sqrt{x\sqrt{x\sqrt{...}}}$=$x$ を証明してください。ただし$x$は正の実数とする。
この動画を見る 

大学入試問題#636「ミスなく」 東京電機大学(2020) #不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#東京電機大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^3log(x^2+1) dx$

出典:2020年東京電機大学 入試問題
この動画を見る 

大分大(医) 面積 積分計算の工夫 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大分大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x-a)(x-4)(x-b)$
$a \lt 4 \lt b$

(1)
$f(x)$と$x$軸とで囲まれる2つの部分の面積が等しいとき、$a+b$の値は?


(2)
$a \gt o,f(x),x$軸$,y$軸とで囲まれる3つの部分の面積が等しいとき、$a,b$の値は?


出典:2006年大分大学 過去問
この動画を見る 

福田の数学〜東北大学2025理系第6問〜2つの正五角形の重なった図形の周の長さの最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{6}$

$1$辺の長さが$1$の正五角形を$K$とする。

このとき、以下の問いに答えよ。

(1)$K$の対角線の長さを求めよ。

(2)$K$の周で囲まれた図形を$P$とする。

また、$P$を$K$の外接円の中心の周りに

角$\theta$だけ回転して得られる図形を$P_{\theta}$とする。

$P$と$P_{\theta}$の共通部分の周の長さを

$\ell_{\theta}$とする。

$\theta$が$0°\lt 72°$の範囲を動くとき、

$\ell_{\theta}$の最小値が$2\sqrt5$であることを示せ。

$2025$年東北大学理系過去問題
この動画を見る 

06愛知県教員採用試験(数学:8-(1) 極限)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{8}-(1)$

$\displaystyle \lim_{x\to 0} \dfrac{\tan x-\sin x}{x^3}$を求めよ.
この動画を見る 
PAGE TOP