福田の数学〜明治大学2021年理工学部第1問(4)〜定積分で表された関数と変曲点 - 質問解決D.B.(データベース)

福田の数学〜明治大学2021年理工学部第1問(4)〜定積分で表された関数と変曲点

問題文全文(内容文):
${\Large\boxed{1}}$(4)連続関数$f(x)$は区間$x \geqq 0$で正の値をとり、区間$x \gt 0$で微分可能
かつ$f'(x)\neq 0$であるとする。さらに、実数の定数aと関数$f(x)$が
$\int_0^x3t^2f(t)dt-(x^3+3)f(x)+\log f(x)=a (x \geqq 0)$
を満たすとする。このとき
$a=-\boxed{\ \ ヌ\ \ }-\log\boxed{\ \ ネ\ \ }$
である。また、曲線$y=f(x)\ (x \gt 0)$の変曲点のx座標をpとすると
$p^3=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。ただし、$\log x$は$x$の自然対数である。
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(4)連続関数$f(x)$は区間$x \geqq 0$で正の値をとり、区間$x \gt 0$で微分可能
かつ$f'(x)\neq 0$であるとする。さらに、実数の定数aと関数$f(x)$が
$\int_0^x3t^2f(t)dt-(x^3+3)f(x)+\log f(x)=a (x \geqq 0)$
を満たすとする。このとき
$a=-\boxed{\ \ ヌ\ \ }-\log\boxed{\ \ ネ\ \ }$
である。また、曲線$y=f(x)\ (x \gt 0)$の変曲点のx座標をpとすると
$p^3=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$である。ただし、$\log x$は$x$の自然対数である。
投稿日:2021.09.29

<関連動画>

大学入試問題#451「このタイプ、たまに出題される」 お茶の水女子大学1997 #不等式の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#お茶の水女子大学
指導講師: ますただ
問題文全文(内容文):
任意の正の数$x,y$に対して
$(x+y)^4 \leqq c^3(x^4+y^4)$が成り立つような$c$の値の範囲を求めよ。

出典:1997年お茶の水女子大学 入試問題
この動画を見る 

【数Ⅲ-176】速度と道のり①(直線運動編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と道のり①・直線運動編)

ポイント
数直線上を運動する点Pの速度$v$が時刻$t$の関数$v=f(t)$で表されるとき、$t=a$から$t=b$までのPの位置の変化$S$、Pの道のり$l$は

位置の変化$S=$ ①
道のり$l=$ ➁

Q
$x$軸上を運動する点の、時刻$t$における位置を$f(t)$、速度を$v(t)$とすると、$v(t)=4t-t^2$と表されるという。
$f(1)=5$のとき、次の問いに答えよ。
③時刻$t$における位置$f(t)$を求めよ。
④$t=2$から$t=5$までに点が動いた道のりを求めよ。
この動画を見る 

数学「大学入試良問集」【18−6 平均値の定理と不等式の証明】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#姫路工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
以下の各問いに答えよ。
(1)
関数$f(x)=x\ log\ x$を微分せよ。

(2)
次の等式を満たす$c$が$x \lt c \lt x+1$の範囲に存在することを示せ。
$(x+1)log(x+1)-x\ log\ x=1+log\ c$

(3)
$x \gt 0$のとき、次の不等式が成り立つことを示せ。
ただし$e$は自然対数の底である。
$\left[ 1+\dfrac{ 1 }{ x } \right]^x \lt e$
この動画を見る 

福田の数学〜北里大学2021年医学部第3問〜関数の増減とはさみうちの原理による数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#数列の極限#微分法#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 関数$f(x)=x^5-2x^3+9x$について考える。実数$t$に対して$y=f(x)$上の点($t, f(t)$)における接線と$x$軸の交点の$x$座標を$g(t)$とおく。
また、正の実数$t$に対して$h(t)=\displaystyle\frac{g(t)}{t}$とおく。次の問いに答えよ。
(1)$g(t)$を求めよ。
(2)$h'(t)=0$を満たす正の実数$t$を求めよ。
(3)実数$p$は、すべての正の実数$t$に対して|$h(t)$|$\leqq p$を満たすとする。
このような$p$の最小値を求めよ。
(4)$a$を定数とする。$a_1=a, a_{n+1}=g(a_n)$ $(n=1,2,3...)$で定められる数列
$\left\{a_n\right\}$に対して、$\displaystyle\lim_{n \to \infty}a_n=0$となることを示せ。

2021北里大学医学部過去問
この動画を見る 

福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$< 1を満たす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部になる2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)$f(\theta)$=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式$f(\theta)$=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも一つ存在することを示せ。
(2)Dの座標をa,θを用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも一つ存在することを示せ。また、このようなθはただ一つであることを示せ。

2023北海道大学理系過去問
この動画を見る 
PAGE TOP