問題文全文(内容文):
$f(x) = ax^2 + bx + 1$ とする。
任意の1次関数 $g(x)$ に対して、常に
$\int_{0}^{1} f(x) g(x) \,dx = 0$
が成り立つとき、定数 $a, b$ の値を求めよ。
$f(x) = ax^2 + bx + 1$ とする。
任意の1次関数 $g(x)$ に対して、常に
$\int_{0}^{1} f(x) g(x) \,dx = 0$
が成り立つとき、定数 $a, b$ の値を求めよ。
チャプター:
0:00 オープニング
0:05 問題文
0:20 解説
3:16 エンディング
単元:
#数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材:
#4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$f(x) = ax^2 + bx + 1$ とする。
任意の1次関数 $g(x)$ に対して、常に
$\int_{0}^{1} f(x) g(x) \,dx = 0$
が成り立つとき、定数 $a, b$ の値を求めよ。
$f(x) = ax^2 + bx + 1$ とする。
任意の1次関数 $g(x)$ に対して、常に
$\int_{0}^{1} f(x) g(x) \,dx = 0$
が成り立つとき、定数 $a, b$ の値を求めよ。
投稿日:2025.03.20





