【テスト対策・中3】4章-2 - 質問解決D.B.(データベース)

【テスト対策・中3】4章-2

問題文全文(内容文):
右のア~エの関数について、下の問いに記号で答えなさい。

①$y$の値が、$x=0$のとき最大になるものをすべて選びなさい。

②$x\geqq 0$の範囲で、$x$の値が増加するにつれて、
$y$の値が減少するものをすべて選びなさい。

ア.$y=-3x^2$

イ.$y=x^2$

ウ.$y=4x^2$

エ.$y=-\dfrac{2}{3}x^2$

③$x$の変域を$-2\leqq x \leqq 1$とするとき、
関数$y-3x^2$と$y$の変域が同じになる関数を
次のア~エから一つ選び、記号で答えなさい。

ア.$y=-4x+8$

イ.$y=-3x^2$

ウ.$y=4x+8$

エ.$y=3x-3$
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右のア~エの関数について、下の問いに記号で答えなさい。

①$y$の値が、$x=0$のとき最大になるものをすべて選びなさい。

②$x\geqq 0$の範囲で、$x$の値が増加するにつれて、
$y$の値が減少するものをすべて選びなさい。

ア.$y=-3x^2$

イ.$y=x^2$

ウ.$y=4x^2$

エ.$y=-\dfrac{2}{3}x^2$

③$x$の変域を$-2\leqq x \leqq 1$とするとき、
関数$y-3x^2$と$y$の変域が同じになる関数を
次のア~エから一つ選び、記号で答えなさい。

ア.$y=-4x+8$

イ.$y=-3x^2$

ウ.$y=4x+8$

エ.$y=3x-3$
投稿日:2017.07.05

<関連動画>

【数学】二次方程式の活用:みんなが嫌いな動く点Pを得意に!

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
教材: #KEYワーク#KEYワーク(数学)中2#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
みんなの苦手な動点Pの問題を克服しよう!
この動画を見る 

【高校受験対策/数学】死守75

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#平行と合同#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守75

①$-8+5$を計算しなさい。

②$1+3×-(\frac{2}{7})$を計算しなさい。

③$2(a+4b)+3(a-2b)$を計算しなさい。

④$\sqrt{27}-\frac{6}{\sqrt{3}}$を計算しなさい。

⑤$(x+1)^2+(x-4)(x+2)$を計算しなさい。

⑥次の式を因数分解しなさい。
$9x^2-4y^2$

⑦右の図のように、長方形$ABCD$を対角線$AC$を折り目として折り返し、
頂点$B$が移った点を$E$とする。
$\angle ACE=20°$のとき、$\angle x$の大きさを求めなさい。

⑧右の図のように、2点$A(2,6)$、$B(8,2)$がある。
次の文中の(ア)、(イ)にあてはまる数を求めなさい。

直線$y=ax$のグラフが、線分$AB$上の点を通るとき、$a$の値の範囲は、(ア) $ \leqq a\leqq$ (イ)である。
この動画を見る 

【数学】中高一貫校用問題集幾何:三平方の定理:空間図形 円錐に接する球1

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図のように、底面の半径が9㎝の円錐に、球O₁が内接している。球O₁の半径は6㎝で、円錐の底面と点Aで接している。また、球O₂は点Bで球O₁に接し、かつ円錐に内接している。
(1)点Bを通り、底面に平行な平面でこの円錐を切ったとき、切り口の円の半径BCの長さを求めなさい。
(2)球O₂の半径を求めなさい。
この動画を見る 

中学生向け計算問題 因数分解 暇つぶし

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 鈴木貫太郎
問題文全文(内容文):
因数分解
$\sqrt{ 900・901・902・903+1 }$を計算せよ

$(x+1)(x+2)(x+3)(x+4)-3$
この動画を見る 

見えない変域  xの遺言

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: 数学を数楽に
問題文全文(内容文):
x,yを実数とし、$2x^2+y^2=4$とする。
$P=x^2+y$をyの式で表すとP=$\boxed{ア}$であり、Pの最小値は$\boxed{イ}$である。
この動画を見る 
PAGE TOP