大学入試問題#236 富山県立大学(2012) #背理法 - 質問解決D.B.(データベース)

大学入試問題#236 富山県立大学(2012) #背理法

問題文全文(内容文):
$x^3-x^2+2x-1=0$の実数解は無理数であることを背理法を用いて示せ

出典:2012年富山県立大学 入試問題
チャプター:

00:00 問題提示
00:12 本編スタート
04:02 作成した解答の掲載 約10秒間隔

単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山県立大学
指導講師: ますただ
問題文全文(内容文):
$x^3-x^2+2x-1=0$の実数解は無理数であることを背理法を用いて示せ

出典:2012年富山県立大学 入試問題
投稿日:2022.06.24

<関連動画>

自作 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^n=k^2+672$
自然数$(k,n)$をすべて求めよ.
この動画を見る 

京都大(改)良問再投稿 3で割った余りを秒で出す

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x^{2020}+1)^{2020}+(x^2+1)^{2020}+1$を$x^2+x+1$で割った余りを求めよ

出典:京都大学 過去問
この動画を見る 

【数A】整数の性質:高3 5月K塾共通テスト 数学IA第4問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)168を素因数分解すると 168=(ア)^(イ)×3×(ウ) である。
よって、168の正の約数の個数は(エオ)個であり、AB=168かつ3≦A<Bを満たすA,Bの組は、全部で(カ)個である。
(2)正の整数nは正の約数の個数が6個であり、正の約数の総和が168であるとする。このような正の整数nのうち、異なる2つの素因数を持つものを求めよう。
nは異なる素数p,qを用いて、n=p^(キ)・q と表せる。
このとき、nの正の約数の総和は[ク]であるから、p=(ケ) であり、n=(コサ) である。

[ク]の解答群
0: (p+p²)q
1: (1+p+p²)q
2: (p+p²)(1+q)
3: (1+p+p²)(1+q)
4: (p+p²+p³)q
5: (1+p+p²+p³)q
6: (p+p²+p³)(1+q)
7: (1+p+p²+p³)(1+q)

(3)正の整数mは正の約数の個数が12個であり、正の約数の総和が624であるとする。このような正の整数mのうち、異なる3つの素因数を持つものは m=(シスセ) である。
この動画を見る 

【数学オリンピックに挑戦】下3桁じゃなく上3桁!?【数学】

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
6桁の平方数の上3桁として考えられるものは全部でいくつあるか。

数学オリンピック過去問
この動画を見る 

【数A】整数の性質:pを素数、aとbを自然数とする。p=a³-b³のとき、p-1が6の倍数であることを証明せよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
pを素数、aとbを自然数とする。$p=a^3-b^3$のとき、p-1が6の倍数であることを証明せよ。
この動画を見る 
PAGE TOP