【数Ⅲ】【微分とその応用】不等式の応用3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【微分とその応用】不等式の応用3 ※問題文は概要欄

問題文全文(内容文):
すべての正の数xに対して、

不等式x>alogxが成り立つような定数aの値の範囲を求めよ。
チャプター:

0:00 問題概要
0:50 解説開始

単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
すべての正の数xに対して、

不等式x>alogxが成り立つような定数aの値の範囲を求めよ。
投稿日:2025.01.22

<関連動画>

福田の1.5倍速演習〜合格する重要問題080〜京都大学2018年度理系第5問〜曲線の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#数列の極限#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
5 曲線y=logx上の点A(t, logt)における法線上に、点BをAB=1となるようにとる。ただしBのx座標はtより大きい。
(1)点Bの座標(u(t), v(t))を求めよ。また(dudt,dvdt)を求めよ。
(2)実数rは0<r<1を満たすとし、tがrから1まで動くときに点Aと点Bが描く曲線の長さをそれぞれL1(r), L2(r)とする。このとき、極限limr+0(L1(r)L2(r))を求めよ。

2018京都大学理系過去問
この動画を見る 

福田のわかった数学〜高校3年生理系069〜接線(1)陰関数の接線

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学III 接線(1) 陰関数の定義

曲線 x+y=1

上の点P(14, 14)における接線および
法線の方程式を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題021〜一橋大学2016年度文系数学第4問〜絶対値の付いた3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数とし、f(x)=x33axとする。区間1x1における
|f(x)|の最大値をMとする。Mの最小値とそのときのaの値を求めよ。

2016一橋大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第4問〜カテナリーと円の相接

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4 
曲線y=ex+ex2 (x>0)Cで表す。Q(X,Y)を中心とする半径rの円が曲線Cと、点P(t,et+et2) (ただしt>0)において共通の接線をもち、さらにX<tであるとする。このときXおよびYtの式で表すと
X=  ()  , Y=  ()  
となる。tの関数X(t),Y(t)X(t)=  ()  ,Y(t)=  ()  により定義する。全てのt>0に対してX(t)>0となるための条件は、rが不等式  ()  を満たすことである。  ()  が成り立たないとき、関数Y(t)t=  ()  において最小値  ()  をとる。また  ()  が成り立つとき、YXの関数と考えて、(dYdX)2+1Yの式で表すと(dYdX)2+1=  ()   となる。

2021慶應義塾大学医学部過去問
この動画を見る 

#京都大学1965#微分_28#元高校教員

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
f(x)=1x3において
f(1)を定義に従って求めよ。

出典:1965年京都大学
この動画を見る 
PAGE TOP preload imagepreload image