【高校数学】 数Ⅱ-68 円の接線の方程式① - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-68 円の接線の方程式①

問題文全文(内容文):
◎次の円の、円上の点Pにおける接線の方程式を求めよう。
x2+y2=25,P(4.3)

x2+y2=20P(2.4)

③点A(3,1)を通り、円x2+y2=2に接する直線の方程式と、接点の座標を求めよう。
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の円の、円上の点Pにおける接線の方程式を求めよう。
x2+y2=25,P(4.3)

x2+y2=20P(2.4)

③点A(3,1)を通り、円x2+y2=2に接する直線の方程式と、接点の座標を求めよう。
投稿日:2015.06.30

<関連動画>

福田の入試問題解説〜慶應義塾大学2022年医学部第3問〜内サイクロイドと極方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)座標平面上の点P(x,y)を、点T(s,t)を中心として半時計周りに角αだけ
回転させるときに、点Pが点P'(x',y')に移るとする。x'とy'をx,y,s,t,α
の式で表すとx=    , y=    となる。
(2)aを正の実数とする。原点O(0,0)とする半径aの円Cに、半径a2で原点O
を通る円Kを点A(a,0)において内接させる。この円Kを円Cに沿って
滑らないように転がす。ただし、KとCの接点がC上を半時計回りに動くようにする。
そして、接点の座標がはじめて(acosβ,asinβ)(0β2π)となるようにする。
円Kに対するこの操作は次の2段階の操作を続けて行うことと同等である。
(i)点B(a2,0)を中心として、円Kを    に角    だけ回転させる。
(ii)原点Oを中心として、円Kを    に角    だけ回転させる。

    ,    ,    ,    の選択肢
時計回り,反時計回り,β,2β,12β

(3)円Kが点Aにおいて円Cに内接しているとき、Kの内部に固定された点Q(b,0)
(ただし、0<b<a)をとる。円Kを、Cとの接点がC上を一周するまで(2)に述べた
やり方でCに沿って転がすとき、点Qが動いてできる曲線をS1とする。S1上の
点の座標を(x,y)として、S1の方程式をx,yを用いて書くと    となる。

(4)円Kが点Aにおいて円Cに内接しているとき、円Cに固定された点R(0,a)をとる。
今度は円Kを固定して、円Cの方をKに接した状態で滑らないようにKに沿って転がす。
2つの円の接点が円Kを    回転したとき、点Rははじめてもとの位置
(0,a)に戻る。Rが描く曲線をS2とする。原点Oを極とし、x軸の正の部分を
始線とする極座標#(r,θ)によるS2の極方程式はr=    である。
ただしr,θはそれぞれS2上の点の原点からの距離、および偏角である。

2022慶應義塾大学医学部過去問
この動画を見る 

福田のおもしろ数学114〜円の接線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
x2+y2=r2 上の点(a,b)における接線の方程式は
ax+by=r2 であることを証明せよ。
この動画を見る 

福田のおもしろ数学115〜円外の点から引いた2本の接線の接点を結んでできる直線の方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
x2+y2=r2 上に円外の点(a,b)から2本の接線を引く。このとき2接点P,Qを結ぶ直線の方程式はax+by=r2 であることを証明せよ。
この動画を見る 

福田のわかった数学〜高校2年生020〜円の極線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#恒等式・等式・不等式の証明#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学II 円の方程式
x2+y2=r2と円の内部の点(a,b)に対して
ax+by=r2
はどんな直線を表すか説明せよ。
ただし、(a,b)(0,0)とする。
この動画を見る 

福田の数学〜東北大学2023年理系第2問〜三角方程式の解の個数とその極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
2 関数f(x)=sin3x+sinxについて、以下の問いに答えよ。
(1)f(x)=0 を満たす正の実数xのうち、最小のものを求めよ。
(2)正の整数mに対して、f(x)=0を満たす正の実数xのうち、m以下のものの個数をp(m)とする。極限値limmp(m)m を求めよ。

2023東北大学理系過去問
この動画を見る 
PAGE TOP preload imagepreload image