【高校数学】 数Ⅱ-68 円の接線の方程式① - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-68 円の接線の方程式①

問題文全文(内容文):
◎次の円の、円上の点Pにおける接線の方程式を求めよう。
①$x^2+y^2=25,P(4.3)$

②$x^2+y^2=20、P(-2.4)$

③点A(3,1)を通り、円$x^2+y^2=2$に接する直線の方程式と、接点の座標を求めよう。
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の円の、円上の点Pにおける接線の方程式を求めよう。
①$x^2+y^2=25,P(4.3)$

②$x^2+y^2=20、P(-2.4)$

③点A(3,1)を通り、円$x^2+y^2=2$に接する直線の方程式と、接点の座標を求めよう。
投稿日:2015.06.30

<関連動画>

福田の一夜漬け数学〜図形と方程式〜円の方程式(8)外から引いた接線(原点中心の円の場合)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#図形と方程式#解と判別式・解と係数の関係#点と直線#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 円$x^2+y^2=5$ の接線で、点(3,1)を通るものを求めよ。
また、接点の座標を求めよ。
この動画を見る 

福田の数学〜神戸大学2024年理系第2問〜放物線と2接線た作る三角形の重心の軌跡

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#面積、体積#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$, $b$, $c$は実数で、$a$≠0とする。放物線$C$と直線$l_1$, $l_2$をそれぞれ
$C$:$y$=$ax^2$+$bx$+$c$
$l_1$:$y$=$-3x$+3
$l_2$:$y$=$x$+3
で定める。$l_1$, $l_2$がともに$C$と接するとき、以下の問いに答えよ。
(1)$b$を求めよ。$c$を$a$を用いて表せ。
(2)$C$が$x$軸と異なる2点で交わるとき、$\displaystyle\frac{1}{a}$のとりうる値の範囲を求めよ。
(3)$C$と$l_1$の接点をP、$C$と$l_2$の接点をQ、放物線$C$の頂点をRとする。$a$が(2)の条件を満たしながら動くとき、$\triangle PQR$の重心Gの軌跡を求めよ。
この動画を見る 

福田の数学〜早稲田大学2025社会科学部第3問〜三角関数の最大最小と三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

$\theta$の関数

$f(\theta)=\cos 2\theta-\sqrt3 \sin 2\theta+4\cos\dfrac{\theta}{2}\left(\sin\dfrac{\theta}{2}-\sqrt3 \cos\dfrac{\theta}{2}\right)+2\sqrt3$

を考える。

ただし、$0\leqq \theta \leqq \pi$とする。次の問いに答えよ。

(1)$k=\sin\theta-\sqrt3 \cos \theta$とおくとき、

$f(\theta)$を$k$の関数で表せ。

(2)$f(\theta)$の最大値、最小値を求めよ。

また、そのときの$\theta$の値を求めよ。

(3) (1)の$k$に対して、$\theta$の方程式

$f(\theta)=ak$の解の個数を求めよ。

ただし、定数$a$は$0\lt a \leqq 3$とする。

$2025$年早稲田大学社会科学部過去問題
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(7)接線の公式と極線の公式、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)円$x^2+y^2=25$ 上の点$(-4,3)$における接線の方程式を求めよ。
(2)円$x^2+y^2-2x+6y=0$ 上の点$(2,-6)$における接線の方程式を求めよ。
(3)円$x^2+y^2=25$ $\cdots$①の外部の点$A(3,8)$から円①に2本の接線を引き、
その2つの接点を$P,Q$とする。直線$PQ$の方程式を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第3問〜円と円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
図のように(※動画参照)円Aの中に、5つの円Bと4つの円Cが含まれている。
中心の円Bは他の4つの円Bに接し、他の4つの円Bのそれぞれは中心の円Bと円A
と2つの円Cに接している。4つの円Cのそれぞれは円Aと2つの円Bに接している。
いま、円Bの半径を1とすると、円Cの半径は
$\frac{\boxed{\ \ アイ\ \ }+\boxed{\ \ ウエ\ \ }\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}$
である。

2021慶應義塾大学総合政策学部過去問
この動画を見る 
PAGE TOP