一次不等式「定数a入り」の全パターン【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

一次不等式「定数a入り」の全パターン【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
次の方程式、不等式を解け。
(1)$ax=3$
(2)$ax \gt 3$
(3)$ax \leqq 3$
(4)$(a-2)x=a^2-4$
(5)$(a-2)x \gt a^2-4$
(6)$(a-2)x \leqq a^2-4$
(7)$(a+1)(a-3)x=(a-3)(a+2)$


次の不等式、連立不等式を解け。
(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
x-a \leqq 3 \\
2x+1 \gt a
\end{array}
\right.
\end{eqnarray}$

(2)$|ax+3| \lt 5$


次の方程式、不等式を解け。
(1)$|x-3|=2$
(2)$|2x-1| \geqq 5$
(3)$|x+4| \lt 2$
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の方程式、不等式を解け。
(1)$ax=3$
(2)$ax \gt 3$
(3)$ax \leqq 3$
(4)$(a-2)x=a^2-4$
(5)$(a-2)x \gt a^2-4$
(6)$(a-2)x \leqq a^2-4$
(7)$(a+1)(a-3)x=(a-3)(a+2)$


次の不等式、連立不等式を解け。
(1)$\begin{eqnarray}
\left\{
\begin{array}{l}
x-a \leqq 3 \\
2x+1 \gt a
\end{array}
\right.
\end{eqnarray}$

(2)$|ax+3| \lt 5$


次の方程式、不等式を解け。
(1)$|x-3|=2$
(2)$|2x-1| \geqq 5$
(3)$|x+4| \lt 2$
投稿日:2020.10.25

<関連動画>

中1生も高1生も大切な絶対値

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
絶対値が$\frac{13}{3}$以下である整数は何個?

神戸龍谷高等学校
この動画を見る 

平方根と式の値 京都橘 2024

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
連立方程式を解け
\begin{eqnarray}
\left\{
\begin{array}{l}
a+b=2\sqrt 5 \\
a-b=-2\sqrt 3
\end{array}
\right.
\end{eqnarray}
$a^2+b^2=?$

2024京都橘大学
この動画を見る 

□=❓

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt {▢ \frac{2}{3}} = ▢\sqrt {\frac{2}{3}}$
▢=?
*▢は同じ自然数
この動画を見る 

因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x(y^3-z^3)+y(z^3-x^3)+z(x^3-y^3)$
これを因数分解せよ.

創価大過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(4)〜球面上の3点が作る三角形

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#円と方程式#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)座標空間に球面S:$(x-3)^2$+$(y+2)^2$+$(z-1)^2$=36 がある。球面Sが平面y=2 と交わってできる円をCとおく。
(i)円Cの中心の座標は$\boxed{\ \ ク\ \ }$であり、半径は$\boxed{\ \ ケ\ \ }$である。
(ii)円Cと平面x=3の交点をA,Bとし、AとB以外の球面S上の任意の点をPとする。三角形PABにおいて、辺PBを4:3に内分する点をD、線分ADを5:3に内分する点をMとし、直線PMと辺ABとの交点をEとする。このとき、AEの長さは$\boxed{\ \ コ\ \ }$である。ただし、Bのz座標はAのz座標よりも大きいとする。

2023慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP