【高校数学】絶対値の1次不等式まとめ 1-14.5【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】絶対値の1次不等式まとめ 1-14.5【数学Ⅰ】

問題文全文(内容文):
$\displaystyle
(1)\,|x-4|\leqq 3x
$
$\displaystyle
(2)\,|x|+|x-2| < x+1
$
$\displaystyle
(3)\,|2x+1|\leqq |2x-1|+x
$
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\,|x-4|\leqq 3x
$
$\displaystyle
(2)\,|x|+|x-2| < x+1
$
$\displaystyle
(3)\,|2x+1|\leqq |2x-1|+x
$
投稿日:2022.05.19

<関連動画>

ポイントは実数 摂南大

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-6xy+10y^2-6y+9=0$
のときの$x,y$を求めよ。
$(ただしx,yは実数)$
この動画を見る 

【数Ⅰ】【集合と論証】背理法の使い方 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
"$x,y,z$は実数とする。次の▢の中に、「必要十分条件であるが十分条件ではない」「十分条件であるが必要条件ではない」「必要十分条件である」「必要条件でも十分条件でもない」のうち、それぞれどれが適するか。

(1)$(x-y)(y-z)=0$は$x=y=z$であるための$\Box$
(2)$「x\gt 0 $かつ$y\gt 0」$は、$xy\gt 0$であるための$\Box$
(3)$x=y=0$は、$「xy=0$かつ$x+y=0」$であるための$\Box$
(4)$\angle A\lt 90$は$△ABC$が鋭角三角形であるための$\Box$
(5)$△ABC$の3辺$BC,CA,AB$の長さがそれぞれa$,b,c$とする。
   $(a-b)(a^2+b^2=c^2)=0$は$△ABC$が直角二等辺三角形であるための$\Box$


$a,b$は実数とする。次の2つの条件$p,q$は同値であることを証明せよ。
$p:a\gt 1$かつ$b\gt 1$  $q:a+b\gt 2$かつ$(a-1)(b-1)\gt 0$
この動画を見る 

上智大2020整数解をもつ二次方程式の条件 2つの解法

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-mx+3m+1=0$が整数解をもつ整数$m$を求めよ.

2020上智大過去問
この動画を見る 

中部大(経済)整式の剰余

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(2x^3+x^2+1)^3$を$x^2-x+1$で割った余りを求めよ

出典:中部大学経営情報学部 過去問
この動画を見る 

不等式は方程式と同じように解けない

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2x+6}{x}=1$
$2x+6=x$
$x=-6$


$\frac{2x+6}{x}<1$
$2x+6<x$
$x<-6$
この動画を見る 
PAGE TOP