解を出さなくても解ける! 難関高校受験するのなら絶対に知って欲しい 解と〇〇の関係 明大明治 - 質問解決D.B.(データベース)

解を出さなくても解ける! 難関高校受験するのなら絶対に知って欲しい 解と〇〇の関係 明大明治

問題文全文(内容文):
$x^2-4x+1=0$の2つの解をa,bとするとき
$a^{10}b^8 + a^6b^8 - 3a^5b^5 =?$

明治大学付属明治高等学校
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-4x+1=0$の2つの解をa,bとするとき
$a^{10}b^8 + a^6b^8 - 3a^5b^5 =?$

明治大学付属明治高等学校
投稿日:2023.04.26

<関連動画>

【保存版】絶対値の方程式の裏技

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
絶対値の方程式の裏技紹介動画です
この動画を見る 

これ知ってた?

アイキャッチ画像
単元: #中3数学#式の計算(展開、因数分解)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$(x+a)^{ 2 }=x^{ 2 }+2ax+a^{ 2 }$の考え方
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第1問(2)〜対数方程式と対称式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)1ではない正の実数$x,\ y$が次の条件を満たすとする。
$\left\{\begin{array}{1}
xy=\displaystyle\frac{1}{4}\\
\displaystyle\frac{1}{\log_2x}+\displaystyle\frac{1}{\log_2y}=\frac{8}{21}
\end{array}\right.$
このとき、$x+y=\frac{\boxed{\ \ キク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コサ\ \ }}$である。

2022明治大学全統過去問
この動画を見る 

因数分解は試してなんぼ。立命館宇治(京都)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$a^2-4ab-3a+4b^2+6b$

立命館宇治高等学校
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第1問(4)〜空間図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)Oを原点とする$xyz$空間に点A(0,0,$\sqrt 6$)があり、$y$軸上の点B, C($t$,$\frac{t}{\tan\theta}$,0)を∠OBA=30°,∠BAC=45°,∠ACB=60° を満たすようにおく。ただし$t$は$t$>0 を満たす実数の定数、$\theta$は0°<$\theta$<90°を満たす実数の定数とする。
(i)$|\overrightarrow{BC}|$=$\boxed{\ \ ケ\ \ }$である。
(ii)$|\overrightarrow{OC}|^2$=$\boxed{\ \ コ\ \ }$である。
(iii)$\theta$は$\tan^2\theta$の値が$\boxed{\ \ サ\ \ }$となる実数である。
この動画を見る 
PAGE TOP