【高校数学】微分③~接線の方程式~ 6-6【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】微分③~接線の方程式~ 6-6【数学Ⅱ】

問題文全文(内容文):
微分 接線の方程式についての説明動画です
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
微分 接線の方程式についての説明動画です
投稿日:2019.02.01

<関連動画>

鳴門教育大 最大値最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+y^2=18$を満たすとき$(x+y)^2-6(x+y)+12$の最大値・最小値とその時の$x,y$の値を求めよ

出典:2013年鳴門教育大学 過去問
この動画を見る 

瞬殺!地道に頑張りたくないよね!3次方程式解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 4x^3-3x^2+2x-1=0$の3つの解を,$\alpha,\beta,\delta$とする.
$\dfrac{1}{\alpha^2},\dfrac{1}{\beta^2},\dfrac{1}{\delta^2}$を解にもつ三次方程式を求めよ.
この動画を見る 

福田の数学〜東北大学2024年理系第2問〜対数不等式の証明と自然数解

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 以下の問いに答えよ。
(1)$t$を$t$>1 を満たす実数とする。正の実数$x$が2つの条件
(a)$x$>$\displaystyle\frac{1}{\sqrt t-1}$
(b)$x$≧$2\log_tx$
をともに満たすとする。このとき、不等式
$x$+1>$2\log_t(x+1)$
を示せ。
(2)$n$≦$2\log_2n$ を満たす正の整数$n$をすべて求めよ。
この動画を見る 

【数Ⅱ】【式と証明】二項定理の活用 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の□に入る数を,二項定理を用いて求めよ。
${}_{101} \mathrm{ C }_0+{}_{101} \mathrm{ C }_2+{}_{101} \mathrm{ C }_4+…$$…+{}_{101} \mathrm{ C }_{98}+{}_{101} \mathrm{ C }_{100}=2^□$

二項定理を用いて,次のことを証明せよ。
ただし,nは3以上の整数とする。

(1)$(1+\dfrac{1}{n})^n>2$

(2) x>0 のとき $(1+x)^n>1+nx+\dfrac{n(n-1)}{2}x^2$




この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(2)〜対称式と最大値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(2)実数$x,y$が$x^2+y^2\leqq 3$を満たしているとき、
$x-y-xy$の最大値は$\boxed{\ \ イ\ \ }$である。

2022早稲田大学商学部過去問
この動画を見る 
PAGE TOP