結局2021年東大理系第1問はどう解くのがよかったのか?~東京大学入試問題研究〜福田の数学 - 質問解決D.B.(データベース)

結局2021年東大理系第1問はどう解くのがよかったのか?~東京大学入試問題研究〜福田の数学

問題文全文(内容文):
東京大学2021年理系大問1

$C:s^2+ax+b$は放物線$y=x^2$と2つの共有点を持ち、一方の共有点のx座標は
$-1 \lt x \lt 0$を満たし、他方の共有点のx座標は$0 \lt x \lt 1$を満たす。
(1)点$(a,b)$のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。

2022東京大学理系過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
東京大学2021年理系大問1

$C:s^2+ax+b$は放物線$y=x^2$と2つの共有点を持ち、一方の共有点のx座標は
$-1 \lt x \lt 0$を満たし、他方の共有点のx座標は$0 \lt x \lt 1$を満たす。
(1)点$(a,b)$のとりうる範囲を座標平面上に図示せよ。
(2)放物線Cの通りうる範囲を座標平面上に図示せよ。

2022東京大学理系過去問
投稿日:2022.02.16

<関連動画>

高知大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=0$
$n^2a_{n+1}=(n+1)^2a_n+2n+1$

$a_n$を求めよ

出典:1995年高知大学 過去問
この動画を見る 

福田の数学〜早稲田大学2025商学部第1問(1)〜方程式の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(1)正の実数$a$に対して、円$x^2+(y-a)^2=a^2$と

曲線$y=x^3$がちょうど$2$つの共有点をもつとき、

$a=\boxed{ア}$である。

$2025$年早稲田大学商学部過去問
この動画を見る 

大学入試問題#259 島根大学(2012) #微分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学
指導講師: ますただ
問題文全文(内容文):
$f(x)=|x|\sin\ x$の$x=0$における微分可能性を調べよ。

出典:2012年島根大学 入試問題
この動画を見る 

大学入試問題#281 首都大学東京(2019) #整数問題 #完全数

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#首都大学東京
指導講師: ますただ
問題文全文(内容文):
$2 \leqq m$:自然数
$2^m-1$:素数
$2^{m-1}(2^m-1)$:完全数

出典:2019年首都大学東京 入試問題
この動画を見る 

福田の数学〜北海道大学2023年文系第4問〜円と放物線の共通接線と囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ qを実数とする。座標平面上に円C:$x^2$+$y^2$=1と放物線P:y=$x^2$+q がある。
(1)CとPに同じ点で接する傾き正の直線が存在するとき、qの値およびその接点の座標を求めよ。
(2)(1)で求めたqの値を$q_1$、接点のy座標を$y_1$とするとき、連立不等式
$\left\{\begin{array}{1}
x^2+y^2≧1\\
y≧x^2+q_1\\
y≦y_1\\
\end{array}\right.$
の表す領域の面積を求めよ。

2023北海道大学文系過去問
この動画を見る 
PAGE TOP