福田の数学〜慶應義塾大学2022年商学部第2問〜空間ベクトルと平面の方程式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年商学部第2問〜空間ベクトルと平面の方程式

問題文全文(内容文):
${\Large\boxed{2}}$点Oを原点とするxyz座標空間に、2点A(2,3,1),\ B(-2,1,3)をとる。
また、x座標が正の点Cを、$\overrightarrow{ OC }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$に垂直で、
$|\overrightarrow{ OC }|=8\sqrt3$となるように定める。
(1)$\triangle OAB$の面積は$\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}$である。
(2)点Cの座標は$(\boxed{\ \ ウ\ \ },\ \boxed{\ \ エオ\ \ },\ \boxed{\ \ カ\ \ })$である。
(3)四面体OABCの体積は$\boxed{\ \ キク\ \ }$である。
(4)平面ABCの方程式は$\ x+\boxed{\ \ ケ\ \ }\ y+\boxed{\ \ コ\ \ }\ z-\ \boxed{\ \ サシ\ \ }=0$である。
(5)原点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標は
$(\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セソ\ \ }},\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }},\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }})$
である。

2022慶應義塾大学商学部過去問
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$点Oを原点とするxyz座標空間に、2点A(2,3,1),\ B(-2,1,3)をとる。
また、x座標が正の点Cを、$\overrightarrow{ OC }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$に垂直で、
$|\overrightarrow{ OC }|=8\sqrt3$となるように定める。
(1)$\triangle OAB$の面積は$\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}$である。
(2)点Cの座標は$(\boxed{\ \ ウ\ \ },\ \boxed{\ \ エオ\ \ },\ \boxed{\ \ カ\ \ })$である。
(3)四面体OABCの体積は$\boxed{\ \ キク\ \ }$である。
(4)平面ABCの方程式は$\ x+\boxed{\ \ ケ\ \ }\ y+\boxed{\ \ コ\ \ }\ z-\ \boxed{\ \ サシ\ \ }=0$である。
(5)原点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標は
$(\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セソ\ \ }},\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }},\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }})$
である。

2022慶應義塾大学商学部過去問
投稿日:2022.06.29

<関連動画>

【高校数学】 数B-48 位置ベクトルと図形④

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①四面体$OABC$において,辺$AB$を$1:2$に内分する点を$P$,
線分$PC$を$2;3$に内分する点を$Q$とする.
また,辺$OA$の中点を$D$,辺$OB$を$2:1$に内分する点を$E$,
辺$OC$を$1:2$に内分する点を$F$とする.
平面$DEF$と線分$OQ$の交点を$R$とするとき,$OR:OQ$を求めよう.
この動画を見る 

【数C】【ベクトルの内積】x,yはベクトルを表す。|x-y|=1,|2y-x|=2,(x-y)⊥(2y-x)とする(1)x,yの大きさを求めよ(2)xとyのなす角をθとするとき,cosθの値を求めよ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$|\vec{x}-\vec{y}| = 1 , |2 \vec{y} - \vec{x}| = 2 , (\vec{x} - \vec{y}) \perp (2 \vec{y} - \vec{x})$ とする。
(1) $\vec{x} , \vec{y}$ の大きさを求めよ。
(2) $\vec{x}$ と $\vec{y}$ のなす角を $\theta$ とするとき、$\cos \theta$ の値を求めよ。
この動画を見る 

【高校数学】 数B-34 平面上の点の存在位置③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎O(0.0)、A(2.1)、B(1.2)、$\overrightarrow{ OP }=s\overrightarrow{ OA }+t\overrightarrow{ OB } $とする。実数S、tが次の条件を満たし ながら変化するとき、点Pの存在範囲を図示しよう。

①$\displaystyle \frac{1}{2}s+t \leqq 2,s \geqq 0,t \geqq 0$

②$ 1\leqq s \leqq 2 ,0 \leqq t \leqq 1$
この動画を見る 

【数学B/平面ベクトル】内積を求める(大きさの式の変形方法)

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$|\vec{ a }|=2\sqrt{ 5 },|\vec{ b }|=\sqrt{ 5 },$  $|\vec{ a }+2\vec{ b }|=2\sqrt{ 5 }$のとき、ベクトル$\vec{ a },\vec{ b }$のなす角$\theta$を求めよ。
この動画を見る 

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第2問〜ねじれの位置にある直線上の2点ずつでできる四面体の体積の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

空間の点$(0,0,1)$を通り

$(1,-1,0)$を方向ベクトルとする

直線を$\ell$とし、点$(1,0,3)$を通り$(0,1,-2)$を

方向ベクトルとする直線を$m$とする。

(1)$P$を$\ell$上の点とし、$Q$を$m$上の点とする。

また直線$PQ$は直線$\ell$と直線$m$に垂線であるとする。

このとき$P$と$Q$の座標、

および線分$PQ$の長さを求めよ。

(2)$\ell$上に$2$点

$A=(t,-t,1),$

$B(2+t+\sin t,-2-t-\sin t,1)$

があり、$m$上に$2$点

$C=(1,t,3,-2t),$

$D=(1,2+t<\cos t,-1-2t-2\cos t)$

があるとする。ただし、$y$は実数とする。

四面体$ABCD$の体積を$V(t)$とする。

$V(0)$を求めよ。

(3)$t$が$t\geqq 0$を動くとき、

$V(t)$の最大値と最小値を求めよ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
この動画を見る 
PAGE TOP