福田の数学〜東京大学2025理系第3問〜平行四辺形を囲む長方形の面積の最大値 - 質問解決D.B.(データベース)

福田の数学〜東京大学2025理系第3問〜平行四辺形を囲む長方形の面積の最大値

問題文全文(内容文):

$\boxed {3} $

平面四辺形$ABCD$において、

$\angle ABC = \dfrac {\pi} {6} , AB = a , BC = b , a \leqq b$とする。

次の条件を満たす長方形$EFGH$を考え、

その面積を$S$とする。

条件:点$A,B,C,D$はそれぞれ

$\quad$辺$EF,FG,GH,HE$上にある。

$\quad$ただし、辺はその両端の点も含むものとする。

(1)$\angle BCG=\theta$とするとき、

$S$を$a,b,\theta$を用いて表せ。

(2)$S$とりうる値の最大値を$a,b$を用いて表せ。

$2025$年東京大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed {3} $

平面四辺形$ABCD$において、

$\angle ABC = \dfrac {\pi} {6} , AB = a , BC = b , a \leqq b$とする。

次の条件を満たす長方形$EFGH$を考え、

その面積を$S$とする。

条件:点$A,B,C,D$はそれぞれ

$\quad$辺$EF,FG,GH,HE$上にある。

$\quad$ただし、辺はその両端の点も含むものとする。

(1)$\angle BCG=\theta$とするとき、

$S$を$a,b,\theta$を用いて表せ。

(2)$S$とりうる値の最大値を$a,b$を用いて表せ。

$2025$年東京大学理系過去問題
投稿日:2025.02.27

<関連動画>

熊本大 対数関数の最大値

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#熊本大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$


$f(x)=log_2x+log_2(6-x)^2$

出典:熊本大学 過去問
この動画を見る 

いい問題(多分)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
a+bcd=10 \\
b+cda=10\\
c+dab=10 \\
d+abc=10 \\
\end{array}
\right.
\end{eqnarray}$

$(a,b,c,d)$の組を求めよ.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題084〜東北大学2018年度理系第4問〜三角形の内接円と外接円の半径の関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 三角形ABCの内接円の半径をr, 外接円の半径をRとし、h=$\frac{r}{R}$とする。
また、$\angle$A=2α, $\angle$B=2β, $\angle$C=2γ とおく。
(1)h=4$\sin\alpha\sin\beta\sin\gamma$となることを示せ。
(2)三角形ABCが直角三角形のときh≦$\sqrt 2-1$が成り立つことを示せ。
また、等号が成り立つのはどのような場合か。
(3)一般の三角形ABCに対してh≦$\frac{1}{2}$が成り立つことを示せ。また等号が成り立つのはどのような場合か。

2018東北大学理系過去問
この動画を見る 

公式を使う?使わない?富山大 積分基本問題

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
a>0
$f(x)=x^3-6x$,$g(x)=-3x+a$
f(x)とg(x)は2つの共有点をもつ
①aの値
②f(x)とg(x)とで囲まれる面積
この動画を見る 

大阪大 対数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$自然数
$0 \lt a \lt 1$
$log_{2}6=m+\displaystyle \frac{1}{n+a}$

(1)
$m,n$を求めよ

(2)
$a \gt \displaystyle \frac{2}{3}$を示せ

出典:2006年大阪大学 過去問
この動画を見る 
PAGE TOP