【数Ⅱ】積分で定義された関数【積分区間を見て、計算結果を考えよう。】 - 質問解決D.B.(データベース)

【数Ⅱ】積分で定義された関数【積分区間を見て、計算結果を考えよう。】

問題文全文(内容文):
$(1)f(x)=3x^2-2x+ \displaystyle \int_{-1}^{1}f(t)dtを満たす関数f(x)を求めよ.$
$(2)f(x)=3x+\displaystyle \int_{0}^{1}(x+t)f(t)dtを満たす関数f(x)を求めよ.$
$(3)y=\displaystyle \int_{1}^{x}(t^2-2t-3)dtの極値を求めよ.$
$(4)\displaystyle \int_{1}^{x}f(t)dt=3x^2-2x+aを満たす関数f(x)と定数aを求めよ.$
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)f(x)=3x^2-2x+ \displaystyle \int_{-1}^{1}f(t)dtを満たす関数f(x)を求めよ.$
$(2)f(x)=3x+\displaystyle \int_{0}^{1}(x+t)f(t)dtを満たす関数f(x)を求めよ.$
$(3)y=\displaystyle \int_{1}^{x}(t^2-2t-3)dtの極値を求めよ.$
$(4)\displaystyle \int_{1}^{x}f(t)dt=3x^2-2x+aを満たす関数f(x)と定数aを求めよ.$
投稿日:2022.09.25

<関連動画>

【数Ⅱ】積分計算で計算ミスを減らすテクニック

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
∫[3-5](x-3)(x-6)dxを求めよ
この動画を見る 

【数Ⅱ】微分法と積分法:不定積分について基礎からめちゃめちゃ分かりやすく解説!用語や記号の解説からしますので初学者必見!

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
∫(3x²-4x+4)dx
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第5問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ 関数f(x)をf(x)=(x+1)(|x-1|-1)+2で定める。\\
(1)y=f(x)のグラフをかきなさい。\\
(2)kを実数とする。このとき、方程式f(x)=kが異なる3つの実数解\\
をもつようなkの値の範囲は\boxed{\ \ ア\ \ }である。\\
(3)曲線y=f(x)上の点P(0,f(0))における接線lの方程式はy=\boxed{\ \ イ\ \ }である。\\
また、曲線y=f(x)と直線lは2つの共有点をもつが、点Pとは異なる共有点を\\
Qとするとき、点Qのx座標は\boxed{\ \ ウ\ \ }である。さらに、曲線y=f(x)と直線lで\\
囲まれた図形の面積は\boxed{\ \ エ\ \ }である。\\
(4)関数F(x)をF(x)=\int_0^xf(t)dtで定める。このとき、F'(x)=0を満たすxを\\
すべて求めるとx=\boxed{\ \ オ\ \ }である。これより、関数F(x)は\\
x=\boxed{\ \ カ\ \ }で最小値\ \boxed{\ \ キ\ \ }\ をとることがわかる。\\
\end{eqnarray}
この動画を見る 

【共通テストでも使える!?】面積を求める1/ 6公式をメチャクチャ分かりやすく解説!例題もあるよ!

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1/6公式を超絶分かりやすく解説!さらに例題も演習!
次の放物線とx軸で囲まれた図形の面積Sを求めよ。
y=-x²+2x+3
この動画を見る 

【短時間でポイントチェック!!】定積分 面積①〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$y=x^2-3x$と$x$軸および$x=1,x=4$で囲まれた面積は?
この動画を見る 
PAGE TOP