佐賀大(医)無理数の証明 - 質問解決D.B.(データベース)

佐賀大(医)無理数の証明

問題文全文(内容文):
2018年 佐賀大学医学部 過去問

①nが平方数でない自然数のとき、
$\sqrt{n}$は無理数であることを示せ。

②$a,b$は正の有理数、$m$は自然数のとき、
$a\sqrt{m}+b\sqrt{m + 1}$
は無理数であることを示せ。
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2018年 佐賀大学医学部 過去問

①nが平方数でない自然数のとき、
$\sqrt{n}$は無理数であることを示せ。

②$a,b$は正の有理数、$m$は自然数のとき、
$a\sqrt{m}+b\sqrt{m + 1}$
は無理数であることを示せ。
投稿日:2023.08.24

<関連動画>

福田のわかった数学〜高校1年生010〜2次関数の最大最小(3)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次関数の最大最小(3)
$y=(x^2-2ax)^2+4(x^2-2ax)$
の最小値が$-4$となるような定数$a$
の値の範囲を求めよ。
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[2]。データの分析の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} [2]就業者の従事する産業は第1次産業、第2次産業、第3次産業の三つに分類される。\\
都道府県別に、就業者数に対する各産業に就業する人数の割合を、\\
各産業の「就業者数割合」と呼ぶことにする。\\
\\
(1)図1(※動画参照)は、1975年から2010年まで5年ごとの8個の年度(それ\\
ぞれを時点という)における都道府県別の三つの産業の就業者\\
数割合を箱ひげ図で表したものである。各時点の箱ひげ図は、\\
それぞれ上から第1次産業、第2次産業、第3次産業である。 \\
次の①~⑤のうち、図1から読み取れることとして正しくない\\
ものは\boxed{\ \ タ\ \ }と\boxed{\ \ チ\ \ }である。\\
\\
タ、チの解答群\\
\\
⓪ 第1次産業の就業者数割合の四分位範囲は、2000年までは\\
後の時点になるにしたがって減少している。\\
① 第1次産業の就業者数割合について、左側のひげの長さと右側\\
のひげの長さを比較すると、どの時点においても左側の方が長い。\\
② 第2次産業の就業者数割合の中央値は、1990年以降、後の時点\\
になるにしたがって減少している。\\
③ 第2次産業の就業者数割合の第1四分位数は、後の時点にした\\
がって減少している。\\
④ 第3次産業の就業者数割合の第3四分位数は、後の時点にした\\
がって増加している。\\
⑤ 第3次産業の就業者数割合の最小値は、後の時点にしたがって増加している。\\
\\
\\
(2)(1)で取り上げた8時点の中から5時点を取り出して考える。\\
各時点における都道府県別の、第1次産業と第3次産業の就業\\
者数割合のヒストグラムを一つのグラフにまとめてかいたもの\\
が、右の5つのグラフである。それぞれの右側の網掛けした\\
ヒストグラムが第3次産業のものである。なお、ヒストグラム\\
の各階級の区間は、左側の数値を含み、右側の数値を含まない。\\
・1985年度におけるグラフは\boxed{\ \ ツ\ \ } である。\\
・1995年度におけるグラフは\boxed{\ \ テ\ \ } である。\\
\\
(※\boxed{\ \ ツ\ \ }, \boxed{\ \ テ\ \ }の選択肢は動画参照)\\
\\
(3) 三つの産業から二つずつを組み合わせて都道府県別の就業者数割合\\
の散布図を作成した。右の図2の散布\\
図群は、左から順に1975年度における第1次産業(横軸)と\\
第2次産業(縦軸)の散布図、第2次産業(横軸) \\
と第3次産業(縦軸)の散布図、第3次産業(横軸)と第1次産業(縦軸)の散布図である。\\
また、図3(※動画参照)は同様に作成した2015年度の散布図群である。\\
下の (\textrm{I})(\textrm{II})(\textrm{III}) は1975年度を基準にしたときの、\\
2015年度の変化を記述したものである。ただし、ここで\\
「相関が強くなった」とは、相関係数の絶対値が大きくなったことを意味する。\\
\\
(\textrm{I}) 都道府県別の第1次産業の就業者数割合と第2次産業\\
の就業者数割合の間の相関は強くなった。\\
(\textrm{II}) 都道府県別の第2次産業の就業者数割合と第3次産業\\
の就業者数割合の間の相関は強くなった。 \\
(\textrm{III}) 都道府県別の第3次産業の就業者数割合と第1次産業\\
の就業者数割合の間の相関は強くなった。\\
正誤の組み合わせとして正しいのは\boxed{\ \ ト\ \ }である。\\
(※\boxed{\ \ ト\ \ }の選択肢は動画参照)\\
\\
(4) 各都道府県の就業者数割合の内訳として男女別の\\
就業者数も発表されている。そこで、就業者数に対する\\
男性・女性の就業者数の割合をそれぞれ「男性の就業者数割合」、\\
「女性の就業者数割合」と呼ぶことにし、\\
これらを都道府県別に算出した、下の図4(※動画参照)は、2015年度における\\
都道府県別の、第1次産業の就業者数割合(横軸)、\\
男性の就業者数割合(縦軸)の散布図である。\\
各都道府県の、男性の就業者数と女性の就業者数を\\
合計すると就業者数の全体になることに注意すると、\\
2015年度における都道府県別の、第1次産業の就業者数割合(横軸)と、\\
女性の就業者数割合(縦軸)の 散布図は\boxed{\ \ ナ\ \ }である。\\
ナについては①~③のうちから 最も適当なものを一つ選べ。
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

【工夫あり】二次方程式の解を四捨五入!?【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$m,n$を正の整数とする。$x$についての二次方程式$12x^2-mx+n=0$の二つの実数解を小数第2位で四捨五入して0.3および0.7を得た。$m,n$を求めよ。

一橋大過去問
この動画を見る 

熊本大(医)整数・数列・二次関数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#整数の性質#数列#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^n$の一の位を$a_n(n$自然数$)$

(1)
$a_{99}$


(2)
$-n^2+2na_n$の最大値とそのときの$n$

出典:1989年熊本大学医学部 過去問
この動画を見る 

福田のわかった数学〜高校1年生021〜2次方程式の解の分離

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 2次方程式の解の分離
$x^2-2ax+a+2=0$
の解が$1 \lt x \lt 3$の範囲に少なくとも
1つ存在する$a$の範囲を求めよ。
この動画を見る 
PAGE TOP