福田の数学〜上智大学2021年TEAP利用文系第2問〜放物線の接線と面積 - 質問解決D.B.(データベース)

福田の数学〜上智大学2021年TEAP利用文系第2問〜放物線の接線と面積

問題文全文(内容文):
${\Large\boxed{2}}$xy平面において、放物線$C:y=x^2$と、互いに直交するCの2つの接線l,mを
考える。
(1)lが点$(2,\ 4)$を通るとき、mの方程式は
$y=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ x+\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$
であり、lとmの交点の座標は
$(\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }},\ \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }})$
である。

(2)lとmの交点がy軸上にあるとき、2直線l,mとCの囲む図形の面積は$\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$である。

2021上智大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$xy平面において、放物線$C:y=x^2$と、互いに直交するCの2つの接線l,mを
考える。
(1)lが点$(2,\ 4)$を通るとき、mの方程式は
$y=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ x+\frac{\boxed{\ \ シ\ \ }}{\boxed{\ \ ス\ \ }}$
であり、lとmの交点の座標は
$(\frac{\boxed{\ \ セ\ \ }}{\boxed{\ \ ソ\ \ }},\ \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }})$
である。

(2)lとmの交点がy軸上にあるとき、2直線l,mとCの囲む図形の面積は$\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$である。

2021上智大学文系過去問
投稿日:2021.08.31

<関連動画>

東工大 三次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k \gt 0$である.
$x^3-x+k=0$は絶対値が1の虚数解をもつ.3つの解を求めよ.

1972東工大過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第2問〜見込む角の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$
サッカー選手Pは下図(※動画参照)のようにペナルティーエリアの左端の線を延長した線
のゴール寄り右3mをドリブルで敵陣にまっすぐ向かっている。Pがゴールに向かって
シュートするとき、Pから見てゴールの見える範囲が大きい方が得策である。すなわち、
下図(※動画参照)のような配置でh=3mのとき、選手Pが蹴り込める角度範囲である$\theta$
が最も大きくなるPのゴールラインからの距離xを求めたい。ただし、ゴールは下図のように
ペナルティーエリアの左右の中央で、ゴールラインの外側に設置されているものとする。
一般に図(※動画参照)のようにペナルティーエリアの左端からゴールの左端までの距離をa、
ペナルティーエリアの左端からゴールの右端までの距離をb、Pのドリブルのラインと
ペナルティーエリアの左端までの距離をh(ただし、$h \lt a$とする)、Pからゴールライン
をx、Pの正面から右のゴールポストまでの角度を$\alpha$、Pの正面から左のゴールポスト
までの角を$\beta$としたとき、次頁の解放の文章を完成させなさい。

(解法)$\tan\theta$を最も大きくするxを求める問題と考えることができる。
$\tan\theta=\tan\boxed{\ \ ア\ \ }=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}=\frac{\boxed{\ \ ア\ \ }×x}{x^2+\boxed{\ \ ウ\ \ }}$
$\tan\theta$の逆数を考えると、相加相乗平均の定理より
$\frac{1}{\tan\theta}=\frac{x}{\boxed{\ \ エ\ \ }}+\frac{\boxed{\ \ オ\ \ }}{x×\boxed{\ \ カ\ \ }} \geqq \frac{2}{\boxed{\ \ キ\ \ }}\sqrt{\boxed{\ \ ク\ \ }}$
であり、$\frac{1}{\tan\theta}$が最小、すなわち$\tan\theta$が最大となるのは$x=\sqrt{\boxed{\ \ ケ\ \ }}$のときである。

(解法終わり)
ペナルティエリアの横幅を40m、ゴールの横幅を8mとすると、今回のサッカー選手Pの場合、
$x=\sqrt{\boxed{\ \ コ\ \ }}m$のときに、$\theta$が最も大きくなることが分かる。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

数学「大学入試良問集」【10−6 領域図式と最大値】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
座標平面上で不等式
$2(log_3\ x-1) \leqq log_3\ y-1 \leqq log_3\left[ \dfrac{ x }{ 3 } \right]+log_3(2-x)$
を満たす点$x(x,y)$全体をつくる領域を$D$とする。
(1)$D$を座標平面上に図示せよ。
(2)$a \lt 2$の範囲にある定数$a$に対し、$y-ax$の$D$上での最大値$M(a)$を求めよ。
この動画を見る 

福田のおもしろ数学248〜cos(cox x)=sin(sin x)の解が存在するかどうかを調べる

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
方程式 $\cos (\cos x) = \sin (\sin x)$ は実数解をもつか?
この動画を見る 

【高校数学】数Ⅲ-81 関数の極限⑥(対数関数)

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to \infty}\log_3 x$

②$\displaystyle \lim_{x\to \infty}\log_{\frac{1}{2}} x$

③$\displaystyle \lim_{x\to \infty}\log_{\frac{1}{2}}x$

④$\displaystyle \lim_{x\to \infty}\log_2 \dfrac{1}{2}$

⑤$\displaystyle \lim_{x\to \infty}\{\log_3 (x^2+1)-2\log_3 x\}$
この動画を見る 
PAGE TOP