福田のわかった数学〜高校2年生048〜領域(3)線分と放物線が共有点をもつ条件 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生048〜領域(3)線分と放物線が共有点をもつ条件

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(3) 線分と放物線の関係\\
\\
2点A(1,\ 1),\ B(3,\ 6)を結ぶ線分AB\\
(端点を除く)が放物線y=x^2+ax+b\\
と共有点をもつとき(a,\ b)の存在する\\
領域を図示せよ。
\end{eqnarray}
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(3) 線分と放物線の関係\\
\\
2点A(1,\ 1),\ B(3,\ 6)を結ぶ線分AB\\
(端点を除く)が放物線y=x^2+ax+b\\
と共有点をもつとき(a,\ b)の存在する\\
領域を図示せよ。
\end{eqnarray}
投稿日:2021.08.20

<関連動画>

福田の一夜漬け数学〜多変数関数、1文字固定(受験編)

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#微分法と積分法#恒等式・等式・不等式の証明#軌跡と領域#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a+b+c=1$のとき、$a^2+b^2+c^2$の最小値を求めよ。

$xy$平面内の領域$-1 \leqq x \leqq 1,-1 \leqq y \leqq 1$ において、$1-ax-by+axy$
の最小値が正であるような$(a,b)$の存在範囲を図示せよ。
この動画を見る 

高次方程式の有理数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
何進法でるか求めよ.
$x^3-21x^2+52x-32=0$が3つの整数解をもつ.
有理数解は$\dfrac{a_0の約数}{a_nの約数}$,$a_n=1$なら有理数解は$a_0$の約数の整数のみ
$a_n x^n+a_{n-1}x^{x-1}+・・・・・・+a_1 x+a_0=0$
この動画を見る 

中山廉人の数学力を鈴木貫太郎がチェック

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
鈴木貫太郎先生が、「指数対数」と「対数関数」の基本を解説します。

公式や定義を確認しましょう。
この動画を見る 

福田の数学〜東北大学2023年文系第1問〜三角形の面積と内接円と外接円の半径

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#三角関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の半径1の円Cの中心Oから距離4だけ離れた点Lをとる。点Lを通る円Cの2本の接線と円Cの接点をそれぞれM、Nとする。以下の問いに答えよ。
(1)三角形LMNの面積を求めよ。
(2)三角形LMNの内接円の半径をrと、三角形LMNの外接円の半径Rをそれぞれ求めよ。

2023東北大学文系過去問
この動画を見る 

【9分でマスター!!】とても重要な加法定理を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#三角関数#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学2B
加法定理について解説します。
①$\cos15$℃
②$\sin75$℃
$\alpha$は第1象限の角で$\sin\alpha=\frac{5}{13}$、$\beta$は第3象限の角で$\cos\beta=-\frac{3}{5}$とする。
$\sin(\alpha+\beta)$、$\cos(\alpha+\beta)$の値は?
この動画を見る 
PAGE TOP