福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(2) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(2)

問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$A(\alpha),B(\beta),C(\gamma)$が
$\alpha+\beta+\gamma=\alpha^2+\beta^2+\gamma^2=0$
を満たす。$\triangle ABC$はどのような三角形か。
単元: #複素数平面#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 異なる3点$A(\alpha),B(\beta),C(\gamma)$が
$\alpha+\beta+\gamma=\alpha^2+\beta^2+\gamma^2=0$
を満たす。$\triangle ABC$はどのような三角形か。
投稿日:2018.05.31

<関連動画>

福田の数学〜慶應義塾大学2022年薬学部第1問(1)〜複素数の計算とド・モアブルの定理

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)整数a,bは等式$(a+bi)^3=-16+16i$を満たす。ただし、iは虚数単位とする。
$(\textrm{i})a=\boxed{\ \ ア\ \ }, b=\boxed{\ \ イ\ \ }$である。
$(\textrm{ii})\frac{i}{a+bi}-\frac{1+5i}{4}$を計算すると$\boxed{\ \ ウ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜早稲田大学理工学部2025第1問〜複素数平面上の点の軌跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

複素数平面上で、複素数$z$が円$\vert z \vert=1$の上の点を動くとき、

$w=\left(\dfrac{1+\sqrt2}{2}\right)z+\left(\dfrac{1-\sqrt2}{2}\right)\dfrac{1}{z}$

を満たす点$w$の軌跡を$C$とする。

次の問いに答えよ。

(1)$C$はどのような図形か。複素数平面上に図示せよ。

(2)$C$と円$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert =\sqrt2$の共有点を求めよ。

(3)$C$で囲まれる領域と$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert \leqq \sqrt2$の

表す領域の共通部分の面積を求めよ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 

秋田大 慶応大 3次方程式 Σ 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数列とその和(等差・等比・階差・Σ)#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#秋田大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
秋田大学過去問題
$2x^3-3x^2+ax-1=0$の1つの解は$x=\frac{1}{2}$,他の解をα,βとしたとき、$α^{30}+β^{30}$の値

慶応義塾大学過去問題
$\displaystyle\sum_{k=1}^nk・2^{k+2}$の値をnで表せ
この動画を見る 

横浜市立大(医)

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$iz^2+2iz+\displaystyle \frac{1}{2}+i=0$を解け

出典:2000年横浜市立大学 過去問
この動画を見る 

福田のおもしろ数学342〜複素数に関する三角不等式と等号成立条件

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数$z_1,z_2$に対して、$|z_1+z_2|\leqq |z_1|+|z_2|が成り立つことを証明してください。$
この動画を見る 
PAGE TOP