福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(2) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(2)

問題文全文(内容文):
${\Large\boxed{1}}$ 点$z$が原点中心、半径1の円周上を動くとき、次の条件を満たす
点$w$はどのような図形を描くか。
(1)$w=2iz+1$
(2)$w=\displaystyle \frac{3z-2i}{z-2}$

${\Large\boxed{2}}$ $\displaystyle \frac{z}{z^2+1}$が実数となるように$z$が動くとき、
点$z$はどのような図形を描くか。
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$z$が原点中心、半径1の円周上を動くとき、次の条件を満たす
点$w$はどのような図形を描くか。
(1)$w=2iz+1$
(2)$w=\displaystyle \frac{3z-2i}{z-2}$

${\Large\boxed{2}}$ $\displaystyle \frac{z}{z^2+1}$が実数となるように$z$が動くとき、
点$z$はどのような図形を描くか。
投稿日:2018.05.29

<関連動画>

01愛知県教員採用試験(数学:14番 複素数)

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$w,z:$複素数
$|w|=1$のとき$w=\bar{ (z-3)i }$をみたす$z$の軌跡を求めよ。
この動画を見る 

長崎大 複素数と整数の融合問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#整数の性質#約数・倍数・整数の割り算と余り・合同式#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$\alpha=m+\sqrt7 ni$,
$\alpha^3=225+2\sqrt7 i$
(1)$x^3=1$を解け.
(2)$m,n$を求めよ.
(3)$Z^3=225+2\sqrt7 i$を解け.

長崎大過去問
この動画を見る 

東海大(医)虚数の回転

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{13}{12}\pi+i\sin\dfrac{13}{12}\pi$を$a+bi$を中心に$\dfrac{\pi}{6}$回転すると,
$\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$となる.
実数$a,b$を求めよ.

東海大(医)過去問
この動画を見る 

大学入試問題#52 防衛医科大学(2020) 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$z^3=8$の虚数解の1つを$\alpha$とする。
$\alpha^4+6\alpha^3+8\alpha^2+8\alpha$の値を求めよ。

出典:2020年防衛医科大学 入試問題
この動画を見る 

【数ⅢC】 複素数平面の基本⑪図形の方程式を条件から考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点zが原点Oを中心とする半径2の円上を動くとき、$w=\dfrac{z-2}{z+1}$はどのような図形を描くか
この動画を見る 
PAGE TOP