【テスト対策】三角比の相互関係をわかりやすく解説! - 質問解決D.B.(データベース)

【テスト対策】三角比の相互関係をわかりやすく解説!

問題文全文(内容文):
$A$は鋭角とする。
$\sin A=\displaystyle \frac{2}{3}$のとき、$\cos A,\tan A$の値を求めよ。
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$A$は鋭角とする。
$\sin A=\displaystyle \frac{2}{3}$のとき、$\cos A,\tan A$の値を求めよ。
投稿日:2023.07.30

<関連動画>

8進数の7の倍数・3の倍数判定法

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8$進法で表記された
$\boxed{a}\boxed{b}\boxed{c}\boxed{d}\boxed{e}\boxed{f}$
が①$7$で割り切れる必要十分条件を求めよ.
②$3$で割り切れる必要十分条件を求めよ.
この動画を見る 

1996 平成8年 大阪府

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
▢内に+-×÷のいずれかの記号を入れる。(同じ記号は何度使ってもよい)
$\sqrt{1▢9▢9▢6} =8$

1991大阪府
この動画を見る 

香川大 3次方程式実数解 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#数学(高校生)#香川大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
香川大学過去問題
$f(x)=x^3-3a^2x+a^2-a$について
(1)$f(x)=0$が相異3実根をもつようなaの範囲
(2)(1)のとき3つの解は-2aと2aの間にあることを示せ
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第2問〜平面ベクトルの直交と絶対値の最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#数C#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
四面体OABCは
$OA=OB=2,\ \ \ OC=3,\ \ \ AB=1,\ \ \ BC=4$
を満たすとする。また、三角形ABCの重心をGとするとき、$OG=\sqrt2$である。
(1)$\overrightarrow{ OA }・\overrightarrow{ OB }=\frac{\boxed{ア}}{\boxed{イ}},$
$\ \ \ \overrightarrow{ OA }・\overrightarrow{ OC}=\frac{\boxed{ウエ}}{\boxed{オ}}$
(2)$\ \overrightarrow{ OG }$と$\overrightarrow{ OA }+k\overrightarrow{ OB }$が垂直であるのは$k=\boxed{カキ}$のときである。
(3)$t$を実数とする。
$|t\overrightarrow{ OA }-2t\overrightarrow{ OB }+\overrightarrow{ OC }|$
の最小値は$\frac{\sqrt{\boxed{クケコ}}}{\boxed{サ}}$であり、
そのときのtの値は$\frac{\boxed{シス}}{\boxed{セ}}$である。

2022青山学院大学理工学部過去問
この動画を見る 

【数A】【数と式】二重根号を外した形を求めよ(1) √(4-2√3)(2) √(17-2√42)(3) √(9-2√20)

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
二重根号を外した形を求めよ
(1) $\sqrt{4-2\sqrt{3}} $
(2) $\sqrt{17-2\sqrt{42}} $
(3) $\sqrt{9-2\sqrt{20}} $
この動画を見る 
PAGE TOP