数学「大学入試良問集」【17−6 直線上の点の極限】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【17−6 直線上の点の極限】を宇宙一わかりやすく

問題文全文(内容文):
$f(x)=-\displaystyle \frac{1}{2}x+3$とする。
$x_1=1$とおいて数列$x_n=f(x_{n-1})$ $n=2,3,・・・$をつくり、平面座標上に点$P_n(x_n,f(x_n))$をとる。
このとき、次の各問いに答えよ。
(1)
数列$\{x_n\}$の一般項$x_n$を求めよ。

(2)
動点$P$が点$P_1$を出発して、$P_2,P_3,・・・,P_n,・・・$と進むとき、動点$P$はどのような点に近づくか。
その座標を求めよ。

(3)
線分$P_nP_{n+1}$の長さを$l_n$ $n=1,2,3,・・・$とする。
$L=\displaystyle \sum_{n=1}^n l_n$を求めよ。
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)=-\displaystyle \frac{1}{2}x+3$とする。
$x_1=1$とおいて数列$x_n=f(x_{n-1})$ $n=2,3,・・・$をつくり、平面座標上に点$P_n(x_n,f(x_n))$をとる。
このとき、次の各問いに答えよ。
(1)
数列$\{x_n\}$の一般項$x_n$を求めよ。

(2)
動点$P$が点$P_1$を出発して、$P_2,P_3,・・・,P_n,・・・$と進むとき、動点$P$はどのような点に近づくか。
その座標を求めよ。

(3)
線分$P_nP_{n+1}$の長さを$l_n$ $n=1,2,3,・・・$とする。
$L=\displaystyle \sum_{n=1}^n l_n$を求めよ。
投稿日:2021.06.23

<関連動画>

【数Ⅲ】【関数と極限】次の関数f(x)において、定義されないxの値、不連続であるxの値をいえ。(1) f(x)=x²-2x-3/x-3(2) f(x)=x³/|x|(3) f(x)=[|cosx|]

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数 f(x) において、定義されない x の値、
不連続である x の値をいえ。
また、それらの x の値で、関数の値を改めて定義し、
すべての実数 x で連続になるようにせよ。

(1) $f(x)=\frac{x^2-2x-3}{x-3}$

(2) $f(x)=\frac{x^3}{|x|}$

(3) $f(x)=[[ \cos x ]]$
この動画を見る 

東大 入試問題 天才ヨビノリのたくみさんが解説 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
東京大学1990
$a_n=\displaystyle\sum_{k=1}^n\frac{1}{\sqrt k}$,$b_n=\displaystyle\sum_{k=1}^n\frac{1}{\sqrt {2k+1}}$
とするとき、$\displaystyle\lim_{n \to \infty}a_n,\displaystyle\lim_{n \to \infty}\frac{b_n}{a_n}$を求めよ。
この動画を見る 

ハルハル様の作成問題⑤ -1 #極限 #ガウス記号

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\theta_n=([x]^n+[\displaystyle \frac{x}{n}])^{\frac{1}{n}}\pi$
(1)
$\displaystyle \lim_{ x \to \infty }\cos\theta_1$

(2)
$\displaystyle \lim_{ x \to \infty }\tan\theta_2$
この動画を見る 

【数Ⅲ】【関数と極限】次の条件によって定められる数列a₁=8、an+₁=3an+4/an+3(1)bn=1/an-2とおくとき、{bn}の一般項を求めよ。(2){an}の一般項とその極限を求めよ

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列$a_n$について、次の問いに答えよ。
$a_1=8$、$a_{n+1}=\dfrac{3a_n+4}{a_n+3}$
(1) $b_{n}=\dfrac{1}{a_n-2} $とおくとき、$b_n$の一般項を求めよ。
(2) $a_n$の一般項とその極限を求めよ。
この動画を見る 

06滋賀県教員採用試験(数学:1-(3) 関数のグラフ)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#関数と極限#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$y=\displaystyle \lim_{n\to\infty} \dfrac{x-x^{2n}}{1+x^{2n}}$
のグラフをかけ.
この動画を見る 
PAGE TOP