【数学】中2-2 式の加法・減法① - 質問解決D.B.(データベース)

【数学】中2-2 式の加法・減法①

問題文全文(内容文):
文字の部分が同じ項を①____といって
計算することができるんだ!
◎計算しよう!!
②$5x+3y-2x+y=$
③$-2x^2+7x+5x-2=$
④$-3a^2b+2ab^2-6ab^2-5a^2b=$
⑤$\displaystyle \frac{1}{3}x^2-2x+\displaystyle \frac{1}{2}x-x^2=$
⑥$(7x=5y)+(4x+y)$
⑦$(-x+12y)-(-5y+x-4)$
⑧$6x-7y$
 $-x+y$
______
⑨$-x^2+6x$
 $5x^26x-9$
______

⑩と⑦の式をひっ算でやってみよう!!
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
文字の部分が同じ項を①____といって
計算することができるんだ!
◎計算しよう!!
②$5x+3y-2x+y=$
③$-2x^2+7x+5x-2=$
④$-3a^2b+2ab^2-6ab^2-5a^2b=$
⑤$\displaystyle \frac{1}{3}x^2-2x+\displaystyle \frac{1}{2}x-x^2=$
⑥$(7x=5y)+(4x+y)$
⑦$(-x+12y)-(-5y+x-4)$
⑧$6x-7y$
 $-x+y$
______
⑨$-x^2+6x$
 $5x^26x-9$
______

⑩と⑦の式をひっ算でやってみよう!!
投稿日:2013.03.12

<関連動画>

慣れれば暗算!!

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$16 \times 25 \times 25 =$
この動画を見る 

【数学】中2-9 文字式の利用① 基本編

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄を埋めよ。
整数$m,n$を使ってどう表す?
①3の倍数→____
②7の倍数→____
③偶数→____
④奇数→____
⑤連続する3つの偶数
→____,____,____
⑥連続する3つの奇数
→____,____,____
⑦連続する3つの整数
→____,____,____
⑧2つの偶数
→____,____
⑨2つの奇数
→____,____
⑩3で割ると2余る数
→____

◎連続する3つの奇数の和は
3の倍数になることを説明しよう!

【説明】$n$を⑪____とすると、
連続する3つの奇数は、それぞれ
⑫____,⑬____,⑭____と表される。
( ⑫ )+( ⑬ )+( ⑭ )
⑮____=⑯____
⑰____は⑱____なので、
⑯____は3の倍数になる。
よって、連続する3つの奇数の和は
3の倍数になる。
この動画を見る 

【高校受験対策】数学-死守14

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#2次関数#円#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$(2x - 1) - 5(x + 1)$ を計算しなさい.

②1次方程式$x-6=\dfrac{x}{4}$を計算しなさい.

③ $(- 6ab)^2 \div (- 9ab^2)$を計算しなさい.

④連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=10 \\
4x-y=-8
\end{array}
\right.
\end{eqnarray}$

⑤$(2\sqrt{10}- 5)(\sqrt{10} + 4)$を計算しなさい.

⑥2次方程式 $2x^2 - 3x - 1 = 0$を解きなさい.

⑦関数$y=2x^2$について,$x$の変域が$a\leqq x\leqq 1$のとき,
$y$の変域は$0\leqq y \leqq 18$である.
このとき,$a$の値を答えなさい.

⑧図1のように,$△ABC$の2辺$AB,AC$上にそれぞれ,
点$D,E$があり,$DE /\!/ BC$である.
$BC = 8cm,△ADE$と$△ABC$の面積の比が$9:16$のとき,
線分$DE$の長さを答えなさい.

⑨図2のように,円$O$の円周上に4つの点$A,B,C,D$があり,
線分$AC$は円$O$の直径である.
$\angle DAC=55°$であるとき,$\angle x$の大きさを答えなさい.

⑩右の表は,生徒37人の最近1か月間に読んだ本の冊数を調べ,
度数分布表にまとめたものである.
このとき,冊数の中央値と最頻値を,それぞれ答えなさい.
また,冊数の平均値を,小数第2位を四捨五入して,
小数第1位まで答えなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守23

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率#立体図形#立体切断#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$-5-(-9)$を計算せよ.

②$- 2 ^ 2 \times 3$を計算せよ.

③$xy ^ 2 \times 6y \div 3xy$を計算せよ.

④$(x - 7)(x - 4) + 8x$を計算せよ.

⑤1次方程式$x + 4 = 5(2x - 1)$を解け.

⑥2次方程式$x ^ 2 + 3x - 18 = 0$を解け.

⑦$2\lt \sqrt a \lt \dfrac{10}{3}$をみたす正の整数のは何個あるか.

⑧図1で,2直線$\ell,m$は平行であり,
$\triangle ABC$は$AB = AC$の二等辺三角形である.
また,頂点$A,C$はそれぞれ $\ell m$上にある.
$\angle x$の大きさを求めよ.

⑨図2は,底面の半径が$3cm$,母線の長さが$ 9cm$の円すいである.
この円すいの体積を求めよ.ただし,円周率は$\pi$とする.

⑩図3は,女子生徒20人のハンドボール投げの記録をヒストグラムに表したもので,
平均値は12.2mであった.
このヒストグラムから読み取れることについて述べた次のア~エのうち,
正しいものをすべて選び,その記号を書け.

ア 中央値 (メジアン) は,平均値よりも小さい.
イ 最頻値(モード)は,平均値よりも大きい.
ウ 記録が12m未満の生徒は,全体の半数以上である.
工 記録が16m以上の生徒は,全体の20%である.

⑪図4で,数直線上を動く点$P$は,最初,原点$O$にある.
点$P$は,1枚の硬貨を1回投げるごとに,表が出れば正の方向に2だけ移動し,
裏が出れば負の方向に1だけ移動する.
硬貨を3回投げて移動した結果,点$P$が原点$O$にある確率を求めよ.

図は動画内参照
この動画を見る 

【受験対策】 数学-小問②

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の計算をしよう。
①$-\displaystyle \frac{1}{7}+\displaystyle \frac{2}{5}$

②$2a+\displaystyle \frac{a}{3}$

③$(-4)^2+8 \div (-2)$

④$2a+b-\displaystyle \frac{2a+b}{3}$

⑤$8x^4y^3 \div 4xy^2$

⑥方程式$\displaystyle \frac{4x+5}{3}=x$を解こう。

⑦$2x-5y=7$を$x$について解こう。

⑧$x=\displaystyle \frac{4}{5},y=-2$のとき、$3(4x-y)-(2x-5y)$の値を求めよう。
この動画を見る 
PAGE TOP