福田の数学〜慶應義塾大学2021年医学部第3問〜見上げる角が等しい点の軌跡と2次曲線 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年医学部第3問〜見上げる角が等しい点の軌跡と2次曲線

問題文全文(内容文):
${\Large\boxed{3}}$
水平な平面上の異なる2点${\rm A(0,1),Q}(x,y)$にそれぞれ高さ$h \gt 0,g \gt 0$の塔が平面に垂直に立っている。この平面上にあって$\rm A,Q$とは異なる点$\rm P$から2つの塔の先端を見上げる角度が等しくなる状況を考える。ただし、$h \neq g$とする。
(1)点$\rm Q$の座標が$ (t,1)$ (ただし$t \gt 0$)のとき、2つの塔を見上げる角度が等しくなるような点$\rm P$は、中心の座標が($\boxed{\ \ (あ)\ \ },\boxed{\ \ (い)\ \ }$)、半径が$\boxed{\ \ (う)\ \ }$の円周上にある。
(2)2つの塔を見上げる角度が等しくなるような点$\rm P$のうち、$y$軸上にあるものがただ1つあるとする。このとき$h$と$g$の間には不等式$\boxed{\ \ (え)\ \ }$が成り立ち、点$\textrm{Q}(x,y)$は2直線$y=\boxed{\ \ (お)\ \ }$, $y=\boxed{\ \ (か)\ \ }$のいずれかの上にある。
(3)2つの塔を見上げる角度が等しくなるような点$\rm P$のうち、$x$軸上にあるものがただ1つであるとする。このとき点$\textrm{Q}(x,y)$は方程式
$\boxed{\ \ (き)\ \ }x^2+\boxed{\ \ (く)\ \ }x+$$\boxed{\ \ (け)\ \ }y^2+$$\boxed{\ \ (こ)\ \ }y=1$
で表される2次曲線$C$の上にある。$C$が楕円であるのは$h$と$g$の間に不等式$\boxed{\ \ (さ)\ \ }$が成り立つときであり、そのとき$C$の2つの焦点の座標は$(\boxed{\ \ (し)\ \ },\boxed{\ \ (す)\ \ })$,$(\boxed{\ \ (せ)\ \ },\boxed{\ \ (そ)\ \ })$である。$\boxed{\ \ (さ)\ \ }$が成り立たないとき$C$は双曲線となり、その2つの焦点の座標は$(\boxed{\ \ (た)\ \ },\boxed{\ \ (ち)\ \ })$,$(\boxed{\ \ (つ)\ \ },\boxed{\ \ (て)\ \ })$である。さらに$\dfrac{h}{g}=\boxed{\ \ (と)\ \ }$のとき$C$は直角双曲線となる。

2021慶應義塾大学医学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
水平な平面上の異なる2点${\rm A(0,1),Q}(x,y)$にそれぞれ高さ$h \gt 0,g \gt 0$の塔が平面に垂直に立っている。この平面上にあって$\rm A,Q$とは異なる点$\rm P$から2つの塔の先端を見上げる角度が等しくなる状況を考える。ただし、$h \neq g$とする。
(1)点$\rm Q$の座標が$ (t,1)$ (ただし$t \gt 0$)のとき、2つの塔を見上げる角度が等しくなるような点$\rm P$は、中心の座標が($\boxed{\ \ (あ)\ \ },\boxed{\ \ (い)\ \ }$)、半径が$\boxed{\ \ (う)\ \ }$の円周上にある。
(2)2つの塔を見上げる角度が等しくなるような点$\rm P$のうち、$y$軸上にあるものがただ1つあるとする。このとき$h$と$g$の間には不等式$\boxed{\ \ (え)\ \ }$が成り立ち、点$\textrm{Q}(x,y)$は2直線$y=\boxed{\ \ (お)\ \ }$, $y=\boxed{\ \ (か)\ \ }$のいずれかの上にある。
(3)2つの塔を見上げる角度が等しくなるような点$\rm P$のうち、$x$軸上にあるものがただ1つであるとする。このとき点$\textrm{Q}(x,y)$は方程式
$\boxed{\ \ (き)\ \ }x^2+\boxed{\ \ (く)\ \ }x+$$\boxed{\ \ (け)\ \ }y^2+$$\boxed{\ \ (こ)\ \ }y=1$
で表される2次曲線$C$の上にある。$C$が楕円であるのは$h$と$g$の間に不等式$\boxed{\ \ (さ)\ \ }$が成り立つときであり、そのとき$C$の2つの焦点の座標は$(\boxed{\ \ (し)\ \ },\boxed{\ \ (す)\ \ })$,$(\boxed{\ \ (せ)\ \ },\boxed{\ \ (そ)\ \ })$である。$\boxed{\ \ (さ)\ \ }$が成り立たないとき$C$は双曲線となり、その2つの焦点の座標は$(\boxed{\ \ (た)\ \ },\boxed{\ \ (ち)\ \ })$,$(\boxed{\ \ (つ)\ \ },\boxed{\ \ (て)\ \ })$である。さらに$\dfrac{h}{g}=\boxed{\ \ (と)\ \ }$のとき$C$は直角双曲線となる。

2021慶應義塾大学医学部過去問
投稿日:2021.06.27

<関連動画>

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、$w=z+\frac{2}{z}$
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、
境界線は含まない)に定点$\alpha$をとり、$\alpha$を通る直線lがCと交わる2点を$\beta_1,\beta_2$とする。
(1)$w=u+vi$(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。
(2)点$\alpha$を固定したままlを動かすとき、積$|\beta_1-\alpha|・|\beta_2-\alpha|$が最大となる
ようなlはどのような直線のときか調べよ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

大学入試問題#133 京都大学(2009) 極方程式の曲線の長さ

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
極方程式
$r=1+\cos\theta$
$(0 \leqq \theta \leqq \pi)$で表される曲線の長さ$l$を求めよ。

出典:2009年京都大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題004〜東北大学2015年理系数学第1問

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#2次曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#東北大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
xy平面において、次の式が表す曲線をCとする。
$x^2+4y^2=1,x \gt 0, y \gt 0$
PをC上の点とする。PでCに接する直線をlとし、Pを通りlと垂直な直線を
mとして、x軸とy軸とmで囲まれてできる三角形の面積をSとする。PがC
上の点全体をうごくとき、Sの最大値とその時のPの座標を求めよ。

2015東北大学理系過去問
この動画を見る 

福田のおもしろ数学406〜2次曲線のグラフを判定する

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{x^2}{\sin\sqrt 2-\sin\sqrt 3}+\dfrac{y^2}{\cos\sqrt2-\cos\sqrt3}=1$

この方程式の表す図形の概形を描け。

この動画を見る 

【数C】【平面上の曲線】長さ8の線分ABの端点Aは軸上を、 端点Bはy軸上を動くとする。(1) 線分ABを5:3に内分する点Pの軌跡を求めよ。(2) 線分ABを5:3に外分する点Qの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
長さ $8$ の線分 $\mathrm{AB}$ の端点$\mathrm{A}$ は $x$ 軸上を、
端点$\mathrm{B}$ は $y$ 軸上を動くとする。

(1) 線分 $\mathrm{AB}$ を $5:3$ に内分する点 $\mathrm{P}$ の軌跡を求めよ。
(2) 線分 $\mathrm{AB}$ を $5:3$ に外分する点 $\mathrm{Q}$ の軌跡を求めよ。
この動画を見る 
PAGE TOP