福田の数学〜立教大学2024年理学部第3問〜放物線のx軸周りとy軸周りの回転体の体積バームクーヘン積分 - 質問解決D.B.(データベース)

福田の数学〜立教大学2024年理学部第3問〜放物線のx軸周りとy軸周りの回転体の体積バームクーヘン積分

問題文全文(内容文):
$\boxed{3}O$を原点とする座標平面上に放物線$C:y=x-x^2$がある。$C$上の点$P(\frac{1}{2},\frac{1}{4})$における$C$の接線を$l$、$Q(1,0)$における$C$の接線を$m$とする。$l$と$y$軸、$m$と$y$軸の交点をそれぞれR、Sとする。
(1)$l,m$の方程式をそれぞれ求めよ。
(2)$C$の$0\leqq x \leqq 1$の部分と、2つの線分QS,OSで囲まれた図形の面積Aを求めよ。
(3)$C$の$0 leqq x \leqq 1$の部分と、線分OQで囲まれた図形を、$x$軸のまわりに1回転させてできる立体の体積$V_1$を求めよ。
(4)$C$の$0 \leqq x \leqq \frac{1}{2}$の部分と、2つの線分PR,ORで囲まれた図形を、$y$軸のまわりに1回転させてできる立体$V_2$を求めよ。
(5)$C$の$0 \leqq x \leqq 1$の部分と、線分OQで囲まれた図形を、$y$軸のまわりに1回転させてできる立体の体積$V_3$を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}O$を原点とする座標平面上に放物線$C:y=x-x^2$がある。$C$上の点$P(\frac{1}{2},\frac{1}{4})$における$C$の接線を$l$、$Q(1,0)$における$C$の接線を$m$とする。$l$と$y$軸、$m$と$y$軸の交点をそれぞれR、Sとする。
(1)$l,m$の方程式をそれぞれ求めよ。
(2)$C$の$0\leqq x \leqq 1$の部分と、2つの線分QS,OSで囲まれた図形の面積Aを求めよ。
(3)$C$の$0 leqq x \leqq 1$の部分と、線分OQで囲まれた図形を、$x$軸のまわりに1回転させてできる立体の体積$V_1$を求めよ。
(4)$C$の$0 \leqq x \leqq \frac{1}{2}$の部分と、2つの線分PR,ORで囲まれた図形を、$y$軸のまわりに1回転させてできる立体$V_2$を求めよ。
(5)$C$の$0 \leqq x \leqq 1$の部分と、線分OQで囲まれた図形を、$y$軸のまわりに1回転させてできる立体の体積$V_3$を求めよ。
投稿日:2024.07.10

<関連動画>

福田の数学〜青山学院大学2022年理工学部第5問〜切り取られる弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
xy平面上に、円$C:(x-5)^2+y^2=5$と直線$l:y=mx$がある。
(1)Cとlが共有点を持つようなmの値の範囲を求めよ。
mの値が(1)で求めた範囲にあるとき、Cとlの2つの共有点をP,Qとし、
線分PQの中点をMとする。ただし、lがCに接するときはP=Q=Mとする。
(2)点Mの座標をmを用いて表せ。
(3)mが(1)で求めた範囲を動くときの点Mの軌跡を求め、図示せよ。
(4)原点からCに引いた2本の接線と(3)で求めた点Mの軌跡で囲まれた図形を
Dとする。図形Dをx軸の周りに1回転してできる回転体の体積Vを求めよ。

2022青山学院大学理工学部過去問
この動画を見る 

茨城大 3次関数と接線 積分 1/12公式導出

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-4x$と$(a,f(a))$における接線とで囲まれた面積$(a \neq 0)$

出典:1994年茨城大学 過去問
この動画を見る 

大学入試問題#201 山梨大学(2021) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}\cos(\sin\ x)\sin2x\ dx$を計算せよ

出典:2021年山梨大学 入試問題
この動画を見る 

大学入試問題#191 岡山県立大学(2013) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{6}}\displaystyle \frac{log(\cos\ x)}{\cos^2x}\ dx$

出典:2013年岡山県立大学 入試問題
この動画を見る 

数学「大学入試良問集」【19−12 (sinx)^nの積分と漸化式の作成】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪府立大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
自然数$n$に対して、定積分$I_n$を$I_n=\displaystyle \int_{0}^{\frac{\pi}{4}}\sin^nx\ dx$で定める。
$n \geqq 3$のとき、$I_n$を$I_{n-2}$と$n$を用いて表せ。
また、$I_2・I_4$の値を求めよ。
この動画を見る 
PAGE TOP