Q:鳩の巣原理の解説して下さい - 質問解決D.B.(データベース)

Q:鳩の巣原理の解説して下さい

問題文全文(内容文):
鳩の巣原理 解説動画です
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
鳩の巣原理 解説動画です
投稿日:2022.03.25

<関連動画>

合同式 数学的帰納法 東工大

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$79^n+(-1)^n.2^{6n-5}$は必ずある自然数であるとき,$m$の倍数と最大値を求めよ.

東工大過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題4。整数解の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第4問 
(1)$5^4=625$を$2^4$で割った時の余りは1に等しい。このことを用いると、不定方程式

$5^4x-2^4y=1 \ldots①$
の整数解のうち、xが正の整数で最小になるのは$x=\boxed{\ \ ア\ \ },y=\boxed{\ \ イウ\ \ }$であることがわかる。
また、①の整数解のうち、xが2桁の正の整数で最小になるのは
$x=\boxed{\ \ エオ\ \ }, y=\boxed{\ \ カキク\ \ }$である。

(2)次に、$625^2$を$5^5$で割った時の余りと、$2^5$で割った時の余りについて考えてみよう。
まず、
$625^2=5^{\boxed{ケ}}$
であり、また$m=\boxed{\ \ イウ\ \ }$とすると、$625^2=2^{\boxed{ケ}}\ m^2+2^{\boxed{コ}}\ m+1$である。
これらにより、$625^2$を$5^5$で割った時の余りと、$2^5$で割った時の余りがわかる。

(3)(2)の考察は、不定方程式
$5^5x-2^5y=1 \ldots②$
の整数解を調べるために利用できる。x,yを②の整数解とする。
$5^5x$は$5^5$の倍数であり、$2^5$で割った時の余りは1となる。よって(2)により、
$5^5x-625^2$は$5^5$でも$2^5$でも割り切れる。$5^5$と$2^5$は互いに素なので
$5^5x-625^2$は$5^5・2^5$の倍数である。このことから、②の整数解のうち、
xが3桁の正の整数で最小になるのは
$x=\boxed{\ \ サシス\ \ }, y=\boxed{\ \ セソタチツ\ \ }$
であることが分かる。

(4)$11^4$を$2^4$で割った時の余りは1に等しい。不定方程式
$11^5x-2^5y=1$
の整数解のうち、xが正の整数で最小になるのは
$x=\boxed{\ \ テト\ \ }, y=\boxed{\ \ ナニヌネノ\ \ }$ である。

2022共通テスト数学過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題078〜京都大学2018年度文理共通問題〜素数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分法と積分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n^3$-7$n$+9 が素数となるような整数$n$を全て求めよ。

2018京都大学文理過去問
この動画を見る 

【理数個別の過去問解説】2016年度京都大学 数学 理系第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(理系)
2016年度(前期)第2問

p,qを素数とする。このとき$p^q+q^p$が素数となるようなp,qの値の組を全て求めよ。
この動画を見る 

整数問題 分数式

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.
$\dfrac{1}{m}+\dfrac{1}{n}=\dfrac{3}{202}$
$(m,n)$をすべて求めよ.
この動画を見る 
PAGE TOP